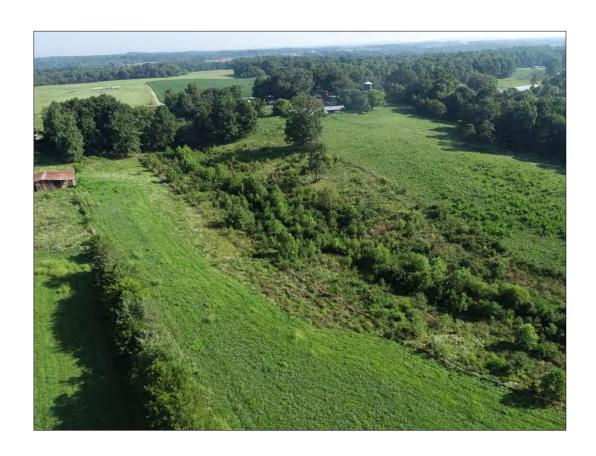
MONITORING REPORT 2023 (Year 5)


MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: January 2023 – October 2023 Submission: February 2024

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY
DIVISION OF MITIGATION SERVICES
1652 MAIL SERVICE CENTER
RALEIGH, NORTH CAROLINA 27699-1652

Restoration Systems, LLC 1101 Haynes St. Suite 211 Raleigh, North Carolina Ph: (919) 755-9490 Fx: (919) 755-9492

Response to Monitoring Year 5 (2023) DMS Comments

Major Hill Mitigation Site
DMS Project ID No. 100015
Full Delivery Contract No. 7193
USACE Action ID No. SAW-2017-01472
DWR No. 17-0921

Comments Received (Black Text) & Responses (Blue Text)

Report & Field Visit

RFP No. 16-006990

- 1. Trash such as large metal gate, tires, and concrete were observed along UT-3 which will need to be removed before IRT closeout.
 - Response: Surface debris in the Enhancement II area along UT-3 will be removed by hand in Q1 2024. No digging or equipment work will be conducted to avoid disruption to the existing mature riparian buffer.
- 2. Some privet sprouts (<1 ft) were observed along UT-3 near southern crossing. Please continue treatment. Overall, this site looks great.
 - Response: Invasive treatments will continue as needed through closeout.

Digital Comments

1. The submission is missing summary tables 2, 5, 8, 9, 10 included in the report; please submit missing tables. If any photo points were established at the mitigation plan phase in addition to cross sections and vegetation plots, please submit these photos as well. Note that stream survey data should include data labels (ex. LTP, TW) in future submission.

Response: Tables 1-4 have been added to the "Background Tables" folder in the digital submittal. Tables 5-6 were included in the "Tables" folder of the "Visual Assessment Data" folder in the draft digital submittal and have been included in the final as well. Table 8 was included in the "Veg Plot Data" folder of the draft digital submittal and has been included in the final as well. Tables 9 and 10 were added to the "Veg Plot Data" folder of the final digital submittal. No photo points were established in the mitigation plan other than vegetation plots and cross-sections.

Boundary Inspection

- Please locate or install the corner monument at platted corners #35 and #41. It is recommended that the
 culvert position relative to the easement at the south-central portion, near corner #41, be verified.
 Response: A surveyor has been contracted to locate these pins. Work will be completed in Q1 2024.
- 2. Large debris were observed inside the conservation easement. Items noted were relict fencing debris, metal T-posts, permanent deer stand, bull gate, and wires which will need to be removed before IRT closeout. Response: Relict fencing will be removed in Q1 2024, and landowners will be advised regarding deer stand standards. Surface debris in the Enhancement II area along UT-3 will be removed by hand in Q1 2024. No digging or equipment work will be conducted to avoid disruption to the existing mature riparian buffer.
- 3. Please repair/ locate/ install missing signs at corners and in-line. Response: Noted. This will be corrected in Q1 2024.
- 4. Wooden H-brace that appears to be supporting the active fence at corner #21 and should be moved outside the conservation easement.

Response: Noted. This will be corrected in Q1 2024.

- 5. There are several platted non-monumented corners at the crossing in the northwest corner of the site that are difficult to locate. It is recommended that they be marked with posts.
 Response: These non-platted corners are at the stream centerline where the parcel line runs, which is not practical to mark with posts. However, in Q1 2024 we will add marking along the general alignment of the crossing to better identify the corridor.
- 6. Fence maintenance is recommended at areas where trees have damaged the fence.

 Response: Recommendation noted. RS will continue to work with landowners to ensure fencing where livestock is present is adequate to prevent encroachment.

Major Hill Year 5, 2023 Monitoring Summary

General Notes

No evidence of nuisance animal activity (i.e., beaver, heavy deer browsing, etc.) was observed.

Streams

- Stream monitoring measurements indicate minimal changes in the cross sections as compared to as-built data. The channel geometry compares favorably with the proposed conditions outlined in the Detailed Restoration Plan and as constructed.
- Across the Site, all in-stream structures are intact and functioning as designed. The channel
 geometry compares favorably with the proposed conditions outlined in the Detailed Restoration
 Plan and as constructed. No stream areas of concern were identified during year 5 (2023)
 monitoring. Stream visual assessment results are documented in Tables 5A-5B (Appendix B). Tables
 for year 5 (2023) data and annual quantitative assessments are included in Appendix D.
- Two bankfull events were documented during year 5 (2023), resulting in 9 bankfull events to date during the monitoring period (Table 15, Appendix E).
- Channel formation was evident in UT 1 during year 5 (2023). The two streamflow gauges and trail cameras recorded 233 and 249 consecutive streamflow days (Tables 14A-B, Appendix E).
- Benthic macroinvertebrate sampled data during MY 5 shows increases in richness and diversity
 when compared to preconstruction surveys. When compared to reference site data, the onsite
 data is only slightly below reference values for MY 5. Results and habitat forms are included in
 Appendix F.

Wetlands

• All six groundwater gauges met success for the Year 5 (2023) monitoring period. Wetland hydrology data is in Appendix E.

Course	Success Criteria Achieved/Max Consecutive Days During Growing Season (Percentage)								
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)		
1	No/14 days* 6.0 percent	Yes/136 days 57.9 percent	Yes/74 days 31.4 percent	Yes/93 days 39.4 percent	Yes/95 days 40.3 percent				
2	No/19 days* 8.1 percent	No/19 days 8.0 percent	No/21 days 8.9 percent	Yes/44 days 18.6 percent	Yes/50 days 21.3 percent				
3	Yes/25 days 10.6 percent	Yes/235 days 100 percent	Yes/226 days 95.8 percent	Yes/204 days 86.4 percent	Yes/190 days 80.9 percent				
4	Yes/34 days 14.5 percent	Yes/72 days 30.5 percent	Yes/60 days 25.4 percent	Yes/155 days 65.7 percent	Yes/85 days 36.2 percent				
5	Yes/119 days 50.6 percent	Yes/135 days 57.4 percent	Yes/53 days 22.5 percent	Yes/77 days 32.6 percent	Yes/51 days 21.7 percent				
6	Yes/77 days 32.8 percent	Yes/44 days 18.7 percent	Yes/80 days 33.9 percent	Yes/81 days 34.3 percent	Yes/100 days 42.6 percent				

Vegetation

• Measurements of the 8 permanent vegetation plots resulted in an average of 354 planted stems/acre excluding livestakes. Seven out of 8 plots met success criteria. Additionally, two temporary vegetation transects met success criteria resulting in a sitewide average of 547 stems/acre, including natural recruits. Lastly, stem height data from the 8 permanent vegetation plots indicates a Site average of 7.29 feet, which meets the 7-foot height criteria required at Year 5. Year 5 (2023) vegetation data is included in Tables 8-10 (Appendix C).

MY 5 (2023) Monitoring Activity and Reporting History

Activity or Deliverable	Data Collection Complete	Completion or Delivery
MY 5 (2023) Vegetation Data Collection	August 25, 2023	
MY 5 (2023) Stream Data Collection	May 16, 2023	
MY 5 (2023) Monitoring Report	October 2023	February 2024

Site Maintenance Report (2023)

Invasive Species Work	Maintenance work
05/17/2023 Privet, Russian Olive, Nodding Thistle, Multiflora rose	06/14/2023, 06/21/2023, 09/27/2023, and 09/28/2023 Old fence within easement removal and boundary inspections.
09/13/23 Privet, Russian Olive, Multiflora rose, Tree-of-	12/02/2023 Fence relocation
heaven	12/05/2023 Supplemental planting

Boundary Inspection

- During the NC DMS boundary inspection with Danielle Mir and Jeff Horton on September 21, 20223, multiple issues were discovered. No conservation easement placards were visible across the entire property. One section of fence located at easement corner 1 was constructed +/-18 inches within the easement, see on Figure 3 (Appendix H). Easement corner 1 appeared to be improperly stamped. One stamped easement cap was not located at easement corner 2, see Figure 3 (Appendix H.)
 - o Resolutions:
 - On September 27th, 2023, RS staff members performed a comprehensive boundary inspection. While performing the inspection, conservation easement placards were installed at each corner of the easement, see Photo Log (Appendix H.) The section of fence constructed inside the easement is determined to remain in place due to property boundary constraints and large hardwood trees in line with the easement boundary, see NC DMS Email Response (Appendix H). Easement corner 1 is stamped appropriately according to the NC DEQ Guidance, see Easement Inspection Photo Log

(Appendix H). Easement corner 2 is a property corner and has an existing iron pipe marking property lines, see Map of Record (Appendix H).

- On September 27, 2023, while performing the easement inspection, RS staff members discovered an encroachment area measuring 0.04 acres on the Site's south side shown on Figure 2 (Appendix B). An existing cattle fence was not relocated to boundary corners during construction. No other encroachments were documented during the inspection.
 - o Resolutions:
 - On December 02, 2023, the fence was relocated outside the easement. On December 05, 2023, a supplemental planting of twenty 3-gallon pots consisting of mitigation plan approved species, including 5 Black gum (*Nyssa Sylvatica*), 5 Water Oak (*Quercus nigra*), and 10 Willow Oak (*Quercus phellos*) were planted within the encroached area, see Photo Log (Appendix H).

MONITORING REPORT 2023 (Year 5)

MAJOR HILL STREAM AND WETLAND MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

> Cape Fear River Basin Cataloging Unit 03030002

Data Collection: January 2023 – October 2023 Submission: February 2024

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY
DIVISION OF MITIGATION SERVICES
1652 MAIL SERVICE CENTER
RALEIGH, NORTH CAROLINA 27699-1652

Prepared by:

Restoration Systems, LLC 1101 Haynes Street, Suite 211

Raleigh, North Carolina 27604 Contact: Worth Creech 919-755-9490 (phone) 919-755-9492 (fax) And

Axiom Environmental, Inc.

218 Snow Avenue Raleigh, North Carolina 27603 Contact: Grant Lewis 919-215-1693 (phone)

TABLE OF CONTENTS

1.0	PRO.	JECT SU	MMARY	1				
			Project Goals & Objectives 1					
	1.2	Proiec	t Background	3				
			t Components and Structure					
			ss Criteria					
		1.4.1	Stream Success Criteria	4				
		1.4.2	Wetland Success Criteria	4				
		1.4.3	Vegetation Success Criteria	4				
2.0	MET	HODS	-	5				
	2.1	Strean	n Monitoring	5				
	2.2	2 Wetland Monitoring6						
		S Vegetation Monitoring						
3.0			5					

APPENDICES

Appendix A. Background Tables

Table 1. Project Components and Mitigation Units

Table 2. Project Activity and Reporting History

Table 3. Project Contacts Table

Table 4. Project Attributes

Appendix B. Visual Assessment Data

Figure 1. Project Location

Figure 2. Current Conditions Plan View

Tables 5A-5B. Visual Stream Morphology Stability

Assessment

Table 6. Vegetation Condition Assessment

Vegetation Plot Photographs

Site Photo Log

Appendix C. Vegetation Data

Table 7. Planted Bare Root Woody Vegetation

Table 8. Total Stems by Plot and Species

Table 9. Temporary Vegetation Plot Data

Table 10. Planted Vegetation Totals

Height Data

Appendix D. Stream Geomorphology Data

Tables 11A-11B. Baseline Stream Data Summary

Tables 12A-12D. Monitoring Data (Dimensional

Morphology Summary & Stream Reach Data Summary)

Table 13. Water Quality Data

Cross-Section Plots

Appendix E. Hydrology Data

Table 14A. UT1 Upstream Channel Evidence

Table 14B. UT1 Downstream Channel Evidence

Stream Gauge Graphs

Table 15. Verification of Bankfull Events

Table 16. Groundwater Hydrology Data

Soil Temperature Graph

Figure D1. 30-70 Percentile Graph for Rainfall

Groundwater Gauge Graphs

Appendix F. Benthic Data

Benthic Results

Habitat Data forms

Appendix G. Riparian Buffer MY5 (2023) Monitoring Report

Appendix H. Easement Inspection Response

Figure 3. Map of Record Overview

NC DMS Comment Response

NC DMS Email Correspondence

Map of Record

Easement Inspection MY5 (2023) Photo Log

1.0 PROJECT SUMMARY

Restoration Systems, LLC has established the North Carolina Division of Mitigation Services (NCDMS) Major Hill Stream and Wetland Restoration Site (Site).

1.1 Project Goals & Objectives

Project goals are based on the *Cape Fear River Basin Restoration Priorities* (RBRP) report (NCEEP 2009) and on-site data collection of channel morphology and function observed during field investigations. The Site is located within Targeted Local Watershed (TLW) 03030002050050. The RBRP report documents benthic ratings vary between "Fair" and "Good-Fair" possibly due to cattle, dairy, and poultry operations. The project is not located in a Regional or Local Watershed Planning Area; however, RBRP goals are addressed by project activities as follows with Site specific information following the RBRP goals in parenthesis.

- 1. Reduce and control sediment inputs (reduction of 10.0 tons/year after mitigation is complete);
- 2. Reduce and manage nutrient inputs (livestock removal from streams, elimination of fertilizer application, and marsh treatment areas may result in a direct reduction of 852.4 pounds of nitrogen and 70.6 pounds of phosphorus per year);
- 3. Protect and augment designated natural heritage areas.

Site-specific mitigation goals and objectives were developed through the use of the North Carolina Stream Assessment Method (NC SAM) and North Carolina Wetland Assessment Method (NC WAM) analyses of existing and reference stream systems at the Site (NC SFAT 2015 and NC WFAT 2010).

Stream/Wetland Targeted Functions, Goals, and Objectives

Targeted Functions	Goals	Objectives	Compatibility of Success Criteria
(1) HYDROLOGY			
(2) Flood Flow (Floodplain Access)		Construct new channel at historic floodplain elevation	BHR not to exceed 1.2
(3) Streamside Area Attenuation	 Attenuate flood flow across the Site. Minimize downstream flooding to the maximum extent possible. Connect streams to functioning wetland systems. 	to restore overbank flows and restore jurisdictional	Document four overbank events in separate
(4) Wooded Riparian Buffer		wetlands • Plant woody riparian buffer	monitoring years • Livestock excluded from the
(4) Microtopography		 Remove livestock Deep rip floodplain soils to reduce compaction and increase soil surface roughness Protect riparian buffers with a perpetual conservation easement 	 easement Attain Wetland Hydrology Success Criteria Attain Vegetation Success Criteria Conservation Easement recorded

Stream/Wetland Targeted Functions, Goals, and Objectives (Continued)

Targeted Functions	Goals	Objectives	Compatibility of Success Criteria	
(1) HYDROLOGY (Continued)				
(3) Stream Stability			Cross-section measurements	
(4) Channel Stability (4) Sediment Transport	Increase stream stability within the Site so that channels are neither aggrading nor degrading.	 Construct channels with proper pattern, dimension, and longitudinal profile Remove livestock Construct stable channels with cobble/gravel substrate Plant woody riparian buffer 	 indicate a stable channel with cobble/gravel substrate Visual documentation of stable channels and structures BHR not to exceed 1.2 ER of 1.4 or greater < 10% change in BHR and ER in any given year Livestock excluded from the easement Attain Vegetation Success Criteria 	
(1) WATER QUALITY				
(2) Streamside Area Vegetation (3) Upland Pollutant Filtration (3) Thermoregulation (2) Indicators of Stressors	Remove direct nutrient and pollutant inputs from the Site and reduce contributions to downstream waters.	 Remove livestock and reduce agricultural land/inputs Install marsh treatment areas Plant woody riparian buffer Restore/enhance jurisdictional wetlands adjacent to Site streams 	 Livestock excluded from the easement Attain Wetland Hydrology Success Criteria Attain Vegetation Success Criteria 	
(1) HABITAT				
(2) In-stream Habitat (3) Substrate (3) Stream Stability (3) In-Stream Habitat (2) Streamside Habitat (3) Streamside Habitat (3) Thermoregulation Wetland Landscape Patch Structure Wetland Vegetation Composition	Improve instream and streamside habitat.	 Construct stable channels with cobble/gravel substrate Plant woody riparian buffer to provide organic matter and shade Construct new channel at historic floodplain elevation to restore overbank flows and plant woody riparian buffer Protect riparian buffers with a perpetual conservation easement Restore/enhance jurisdictional wetlands adjacent to Site streams 	 Cross-section measurement indicate a stable channel with cobble/gravel substrate Visual documentation of stable channels and in-stream structures. Attain Wetland Hydrology Success Criteria Attain Vegetation Success Criteria Conservation Easement recorded 	

1.2 Project Background

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line (Figure 1, Appendix B).

Before construction, Site land use consisted of disturbed forest and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, which had been relocated to the floodplain edge, ditched, impounded, trampled by livestock, eroded vertically and laterally, and received extensive sediment and nutrient inputs from stream banks and adjacent pastures. Approximately 60 percent of the stream channel was degraded, contributing to sediment export from the Site resulting from mechanical processes such as livestock hoof shear. In addition, streamside wetlands were cleared and drained by channel downcutting and land uses. Preconstruction Site conditions resulted in degraded water quality, a loss of aquatic habitat, reduced nutrient and sediment retention, and unstable channel characteristics (loss of horizontal flow vectors that maintain pools and an increase in erosive forces to channel bed and banks). Site restoration activities restored riffle-pool morphology aiding in energy dissipation, increased aquatic habitat, stabilized channel banks, and will greatly reduce sediment loss from channel banks.

1.3 Project Components and Structure

Site restoration activities generated 3058 Stream Mitigation Units (SMUs) and 0.76 Wetland Mitigation Units (WMUs) as the result of the following:

- 1738 linear feet of Priority I stream restoration
- 3299 linear feet of stream enhancement (Level II)
- 0.54 acre of riparian wetland restoration
- 0.44 acre of riparian wetland enhancement

Additional activities that occurred at the Site included the following.

- Installation of a marsh treatment area to treat drainage prior to entering UT1.
- Fencing the entire conservation easement by leaving some pre-existing fencing, removing fencing, and installing additional fencing.
- Planting 8.11 acres of the Site with 8600 stems (planted species and densities by zone are included in Table 7 [Appendix C]).
- Removing a small, abandoned farm pond by 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that was unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Site design was completed in February 2018. Construction started on July 25, 2018 and ended within a final walkthrough on September 6, 2018. The Site was planted in December 2018-January 2019. Completed project activities, reporting history, completion dates, project contacts, and background information are summarized in Tables 1-4 (Appendix A).

1.4 Success Criteria

Project success criteria have been established per the October 24, 2016, NC Interagency Review Team Wilmington District Stream and Wetland Compensatory Mitigation Update.

1.4.1 Stream Success Criteria

From a mitigation perspective, several goals and objectives are assumed to be functionally elevated by restoration activities without direct measurement. Other goals and objectives will be considered successful upon achieving vegetation success criteria. The following summarizes stream success criteria.

- All streams must maintain an Ordinary High-Water Mark (OHWM), per RGL 05-05.
- Continuous surface flow must be documented each year for at least 30 consecutive days.
- Bank height ratio (BHR) cannot exceed 1.2 at any measured cross-section.
- Entrenchment ratio (ER) must be no less than 1.4 at any measured riffle cross-section.
- BHR and ER at any measure riffle cross-section should not change by more than 10% from baseline condition during any given monitoring period.
- The stream project shall remain stable and all other performance standards shall be met through four separate bankfull events, occurring in separate years, during the monitoring years 1-7.

1.4.2 Wetland Success Criteria

The following summarizes wetland success criteria.

• Saturation or inundation within the upper 12 inches of the soil surface for, at a minimum, 10 percent of the growing season during average climatic conditions

According to the *Soil Survey of Alamance County*, the growing season for Alamance County is from April 17 – October 22 (USDA 1960). However, the start date for the growing season is not typical for the Piedmont region; therefore, for this project, hydrologic success will be determined using data from March 1 - October 22 to represent the period of biological activity more accurately. Based on growing season information outlined in the *Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region* (USACE 2010), this will be confirmed annually by soil temperatures exceeding 41 degrees Fahrenheit at 12 inches depth and/or bud burst.

Target hydrological characteristics include saturation or inundation for 10 percent of the monitored period (March 1-October 22) during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may be used for comparison to the Site; however, reference gauge data will not be tied to success criteria. These areas are expected to support hydrophytic vegetation. A jurisdictional determination will be performed if wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring. The jurisdictional determination will not supersede monitoring data or overturn a failure in meeting success criteria; however, this information may be used by the IRT, at the discretion of the IRT, to make a final determination on Site wetland re-establishment success.

1.4.3 Vegetation Success Criteria

The following summarizes vegetation success criteria.

- Within planted portions of the Site, a minimum of 320 stems per acre must be present at year 3; and a minimum of 210 stems per acre must be present at year 7.
- Trees must average 7 feet in height at year 5, and 10 feet in height at year 7.
- Planted and volunteer stems are counted, provided they are included in the approved planting list for the Site; natural recruits not on the planting list may be considered by the IRT on a caseby-case basis.
- Any single species can only account for 50% of the required stems within any vegetation plot.

2.0 METHODS

Monitoring requirements and success criteria outlined in this plan follow the October 24, 2016 NC Interagency Review Team *Wilmington District Stream and Wetland Compensatory Mitigation Update*. Monitoring will be conducted by Axiom Environmental, Inc. Annual monitoring reports of the data collected will be submitted to the NCDMS by Restoration Systems no later than December 31 of each monitoring year data is collected. The monitoring schedule is summarized in the following table.

Monitoring Schedule

Resource	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6	Year 7
Streams	Х	Х	Х		Х		Х
Wetlands	Х	Х	Х	Х	Х	Х	Х
Vegetation	Х	Х	Х		Х		Х
Macroinvertebrates			Х		Х		Х
Water Quality	Х	Х	Х	Х	Х	Х	Х
Visual Assessment	Х	Х	Х	Х	Х	Х	Х
Report Submittal	Х	Х	Х	Х	Х	Х	Х

2.1 Stream Monitoring

Annual monitoring will include development of channel cross-sections and substrate on riffles and pools (Figure 2, Appendix B). Data presented in graphic and tabular format include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, and 5) width-to-depth ratio. Longitudinal profiles were monitored for as-built; however, profiles will not be measured unless monitoring demonstrates channel bank or bed instability. In this case, longitudinal profiles may be required by the USACE along reaches of concern to track changes and demonstrate stability.

Stream Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent
Stream Profile	Full longitudinal survey	As-built (unless otherwise required)	All restored stream channels
Stream Dimension	Cross-sections	Years 1, 2, 3, 5, and 7	10 cross-sections
	Visual Assessments	Yearly	All restored stream channels
Channel Stability	Bank Pins	Yearly	Only if instability is documented during monitoring
	Additional Cross-sections	Yearly	Only if instability is documented during monitoring
Continuous monitoring Stream Hydrology water level gauges and/or trail camera		Continuous recording through monitoring period	Two gauges on UT1 (upstream and downstream) and one trail camera on UT1 (downstream)
Water Quality	Water samples	Yearly	Two locations
Macroinvertebrates	Qual 4 sampling	Years 3, 5, and 7	Two locations

All streams are functioning as designed, and no stream areas of concern were observed during year 5 (2023) monitoring. Stream morphology and water quality data is available in Appendix D, and benthic macroinvertebrate data is in Appendix F.

Benthic macroinvertebrate sampled data during MY 5 shows increases in richness and diversity when compared to preconstruction surveys. When compared to reference site data, the onsite data is only slightly below reference values for MY 5. Results and habitat forms are included in Appendix F.

2.2 Wetland Monitoring

Six groundwater monitoring gauges were installed within the drained pond area and the remaining wetland restoration areas to take measurements after hydrological modifications were performed at the Site (Figure 2, Appendix B). Hydrological sampling will continue throughout the entire year at intervals necessary to satisfy jurisdictional hydrology success criteria. In addition, an on-site rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions, and a trail camera was installed to confirm overbank flooding events. Growing season soil temperatures will also be documented using a continuously logging soil temperature probe, this data will be provided with wetland hydrology data (Appendix E).

Wetland Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
Wetland Restoration	Groundwater gauges	As-built, Years 1, 2, 3, 4, 5, 6, and 7	6 gauges spread throughout restored wetlands	Soil temperature at the beginning of each monitoring period, groundwater and rain data for each monitoring period

Summary of Monitoring Period/Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud Burst Documented	Monitoring Period Used for Determining Success	10 Percent of Monitoring Period
2019 (Year 1)	March 1, 2019	March 1-October 22 (236 days)	24 Days
2020 (Year 2)	March 1, 2020	March 1-October 22 (236 days)	24 Days
2021 (Year 3)	March 1, 2021	March 1- October 22 (236 days)	24 Days
2022 (Year 4)	March 1, 2022	March 1- October 22 (236 days)	24 Days
2022 (Year 5)	March 1, 2023*	March 1- October 22 (236 days)	24 Days

^{*}An on-site soil temperature data logger installed 12 inches below the ground surface read 54.08°F on March 1, and the soil temperature remained well-above 41°F thereafter. Additionally, bud bursts were documented on February 28.

All six groundwater gauges met success criteria for the year 5 (2023) monitoring period. Year 5 (2023) groundwater gauge data and graphs are located in Appendix E.

2.3 Vegetation Monitoring

Planting occurred in December 2018-January 2019 within 8.11 acres of the Site and included 8600 stems. After planting was completed, an initial evaluation was performed to verify planting methods and to determine initial species composition and density.

In early January 2020, a winter-time visual assessment of the Site was performed, and it was determined that although Year 1 (2019) vegetation data, including random transects, showed a high density of trees, a light supplemental planting would help ensure the long-term success in several areas. On January 31, 2020, three areas that visually exhibited low stem density and/or poor vigor were supplementally planted (Figure 2, Appendix B). During the supplemental planting effort, 370 stems were planted across 1.20 acres (approximately 300 stems per acre). As the planting was designated for visual purposes and was not an effort to increase stem density data, no stems were planted within permanent vegetation plots.

Preparation included the application of 100 lbs of lime, 50 lbs of fertilizer, and 3 lbs of seed to stabilize bare areas. The following table lists species included in the supplemental planting list.

2020 Supplemental Planting Species List

Species	Number of Stems
Tag Alder (<i>Alnus serrulata</i>) [@]	20
Chinkapin (<i>Castanea pumila</i>) [@]	20
Hackberry (Celtis occidentalis)%	50
Hawthorn (<i>Crataegus marshallii</i>) [@]	20
Crab Apple (<i>Malus angustifolia</i>) [@]	50
Red Mulberry (<i>Morus rubra</i>) [@]	100
Sycamore (<i>Platanus occidentalis</i>)*	50
Shumard Oak (<i>Quercus shumardii</i>) [@]	50
Total	370

^{*} Included in mitigation plan planting list

In addition, three random vegetation transects (MY2 2020 Random Vegetation Transects) were measured after planting was complete to determine that those areas met the required stem densities; results indicated a range of stems per acre of 364 to 1012.

An assessment was made during early Fall 2018 to treat fescue within the Dry-Mesic Oak Hickory Forest planting zones to reduce competition with planted stems. Treatment was conducted in December 2018. Treatments of invasive plant species continued during 2019 throughout the Site. Japanese Stiltgrass and Tree-of-Heaven were high priorities during the 2019 invasive treatment season. Restoration Systems will continue to treat and monitor the Site for invasive species throughout the monitoring period.

[%] Not included in mitigation plan planting list but meets target community

[@] Species selected based on lack of availability of mitigation plan planting list and target community species

Site Maintenance Report (2023)

Invasive Species Work	Maintenance work
05/17/2023 Privet, Russian Olive, Nodding Thistle, Multiflora rose	06/14/2023, 06/21/2023, 09/27/2023, and 09/28/2023 Old fence within easement removal and boundary inspections. 12/02/2023
09/13/23 Privet, Russian Olive, Multiflora rose, Tree-of- heaven	Fence relocation 12/05/2023 Supplemental planting

2023 Planned Vegetation Maintenance

Restoration Systems continues to monitor fescue throughout the Site. Based on permanent and random vegetation monitoring plots and visual observations, planted stems are established within areas where fescue was a concern.

On September 27, 2023, while performing the easement inspection, members discovered an encroachment area measuring .04 acres on the site's south side shown on Figure 2 (Appendix B). An existing cattle fence was not relocated to boundary corners during construction. No other encroachments were documented during the inspection. On December 02, 2023, the fence was relocated outside the easement. On December 05, 2023, a supplemental planting of twenty 3-gallon pots consisting of mitigation plan approved species, including 5 Black gum (*Nyssa Sylvatica*), 5 Water Oak (*Quercus nigra*), and 10 Willow Oak (*Quercus phellos*) were planted within the encroached area, see Photo Log (Appendix H).

Vegetation Monitoring Summary

Parameter	Method	Schedule/Frequency	Number/Extent	Data Collected
Vegetation	Permanent vegetation plots 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	8 plots spread across the Site	Species, height, location, planted vs. volunteer, and age
establishment and vigor	Random vegetation plots, 0.0247 acre (100 square meters) in size	As-built, Years 1, 2, 3, 5, and 7	2 plots randomly selected each year	Species and height

During quantitative vegetation sampling, 8 sample plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). Measurement also included two random sample plots (50-meter by 2-meter). Measurements of the 8 permanent vegetation plots resulted in an average of 354 planted stems/acre excluding livestakes. All plots met the stem density success criteria based on planted stems alone except for permanent plots 1 and 4; however, when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*), plot 1 met the stem density success criteria. Additionally, both temporary vegetation transects met the stem density success criteria resulting in a sitewide average of 547 stems/acre, including natural recruits. Lastly, stem height data from the 8 permanent vegetation plots indicates a Site average of 7.29 feet, which meets the 7-foot height criteria required at Year 5. Year 5 (2023) vegetation data is included in Tables 8-10 (Appendix C).

3.0 REFERENCES

- Griffith, G.E., J.M. Omernik, J.A. Comstock, M.P. Schafale, W.H. McNab, D.R. Lenat, T.F. MacPherson, J.B. Glover, and V.B. Shelbourne. 2002. Ecoregions of North Carolina and South Carolina. U.S. Geological Survey, Reston, Virginia.
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation.

 Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Mitigation Services (NCDMS). 2014. Stream and Wetland Mitigation Monitoring Guidelines. North Carolina Department of Environmental Quality, Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2005. Cape Fear River Basinwide Water Quality Plan. Available: https:// https://deq.nc.gov/about/divisions/water-resources/planning/basin-planning/water-resource-plans/cape-fear-2005 [December 8, 2016]. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina.
- North Carolina Division of Water Resources (NCDWR). 2016. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 5.0). (online). Available: https://files.nc.gov/ncdeq/Water%20Quality/Environmental%20Sciences/BAU/NCDWRMacroin-vertebrate-SOP-February%202016 final.pdf
- North Carolina Division of Water Quality (NCDWQ). 2009. Small Streams Biocriteria Development.

 Available: http://portal.ncdenr.org/c/document_library/get_file?uuid=2d54ad23-0345-4d6e-82fd-04005f48eaa7&groupId=38364
- North Carolina Ecosystem Enhancement Program (NCEEP). 2009. Cape Fear River Basin Restoration Priorities 2009 (online). Available: http://portal.ncdenr.org/c/document_library/get_file?uuid= 864e82e8-725c-415e-8ed9-c72dfcb55012&groupId=60329
- North Carolina Stream Functional Assessment Team. (NC SFAT 2015). N.C. Stream Assessment Method (NC SAM) User Manual. Version 2.1.
- North Carolina Wetland Functional Assessment Team. (NC WFAT 2010). N.C. Wetland Assessment Method (NC WAM) User Manual. Version 4.1.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- Simon A, Hupp CR. 1986. Geomorphic and Vegetative Recovery Processes Along Modified Tennessee Streams: An Interdisciplinary Approach to Disturbed Fluvial Systems. Forest Hydrology and Watershed Management. IAHS-AISH Publ.167.

- United States Department of Agriculture (USDA). 2016. Web Soil Survey (online). Available: http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx [August 2016].
- United States Department of Agriculture (USDA). 1960. Soil Survey of Alamance County, North Carolina. Soil Conservation Service.
- United States Department of Agriculture (USDA). 2021. Natural Resources Conservation Service National Weather and Climate Center. AgACIS Climate Data. Burlington Regional Airport WETS Station (online). Available: http://agacis.rcc-acis.org

Appendix A Background Tables

Table 1. Project Components and Mitigation Units
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attributes Table

Table 1. Project Components and Mitigation Credits - Major Hill Restoration Site

Reach ID	Stream Stationing/ Wetland Type	Existing Footage/ Acreage	Mitigation Plan Footage/ Acreage	Constructed Footage/ Acreage	Restoration Level	Restoration or Restoration Equivalent	Mitigation Ratio	Mitigation Credits	Comment
UT 1	00+00 to 16+99	1829	1699	1699	Restoration	1699	1:1	1699	
UT 1	16+99 to 27+96	1097	1060	1097	EII	1097	2.5:1	439	
UT 2	00+00 to 01+68	168	168	168	EII	168	2.5:1	67	
UT 2	01+68 to 02+07	39	43	39	Restoration	39	1:1	39	
UT 3	00+00 to 22+98	2298	2197	2298*	EII	2298-80-144- 40= 2034	2.5:1	814	80 If and 40 If of UT3 are not credit generating due to crossings and drainage easement. 144 If are not credit generating due to lack of control of south bank and drainage easement.
Wetlands	Riparian Riverine		0.54	0.54	Restoration	0.54	1:1	0.54	Wetland Restoration
Wetlands	Riparian Riverine	0.52	0.44	0.44	Enhancement	0.44	2:1	0.22	Wetland Enhancement

Table 1. Project Components and Mitigation Credits - Major Hill Restoration Site (Continued)

Length & Area Summations by Mitigation Category							
Restoration Level Stream (linear footage) Riparian Wetland (acrea							
Restoration	1738	0.54					
Enhancement (Level II)	3299*						
Enhancement		0.44**					

^{*} An additional 264 linear feet of stream enhancement (level II) is proposed outside of the easement (at road crossings), or the sponsor controls only one bank of the stream, and is therefore not included in this total or in mitigation credit calculations.

^{**}Approximately 0.08 acre of existing, degraded wetland will not be enhanced as the result of the design channel crossing the wetland area.

Overall Assets Summary				
Asset Category	Overall Credits			
Stream	3057.600			
Riparian Riverine Wetland	0.760			

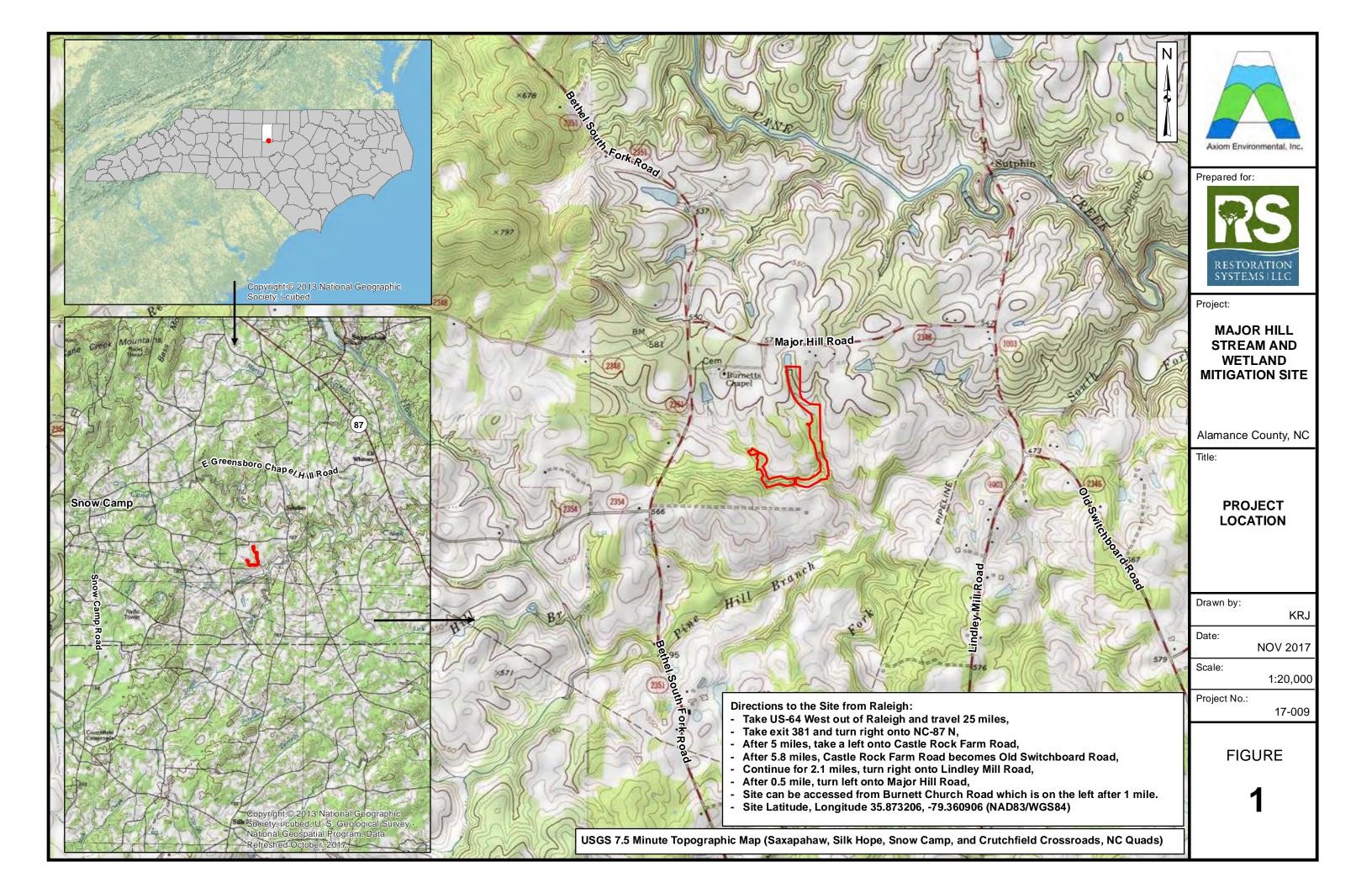
Table 2. Project Activity and Reporting History - Major Hill Restoration Site

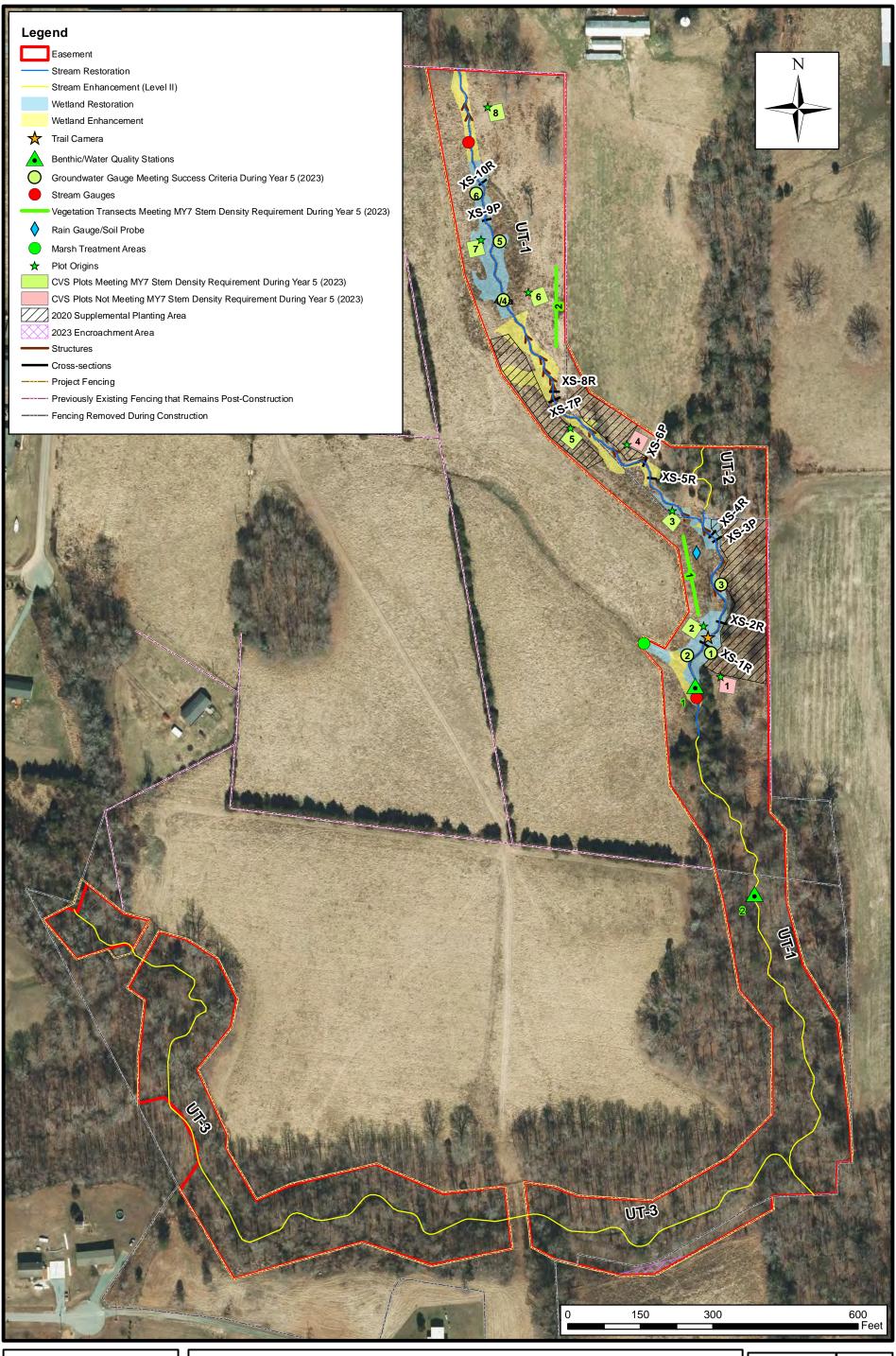
Activity or Deliverable	Data Collection Complete	Completion or Delivery
Technical Proposal Issue Date (RFP No. 16-006990)	September 16, 2016	September 16, 2016
Institution Date (NCDMS Contract No. 7193)		May 22, 2017
Mitigation Plan		February 2018
404 Permit Date		June 28, 2018
Construction Plans		July 2018
Site Construction		July 25-September 6, 2018
Planting		December 2018-January 2019
As-built Stream Data Collection	September 19, 2018	
As-built Vegetation Data Collection	January 8, 2019	
As-built Baseline Monitoring Report		March 2019
MY1 (2019) Vegetation Data Collection	September 9, 2019	
MY1 (2019) Stream Data Collection	September 10, 2019	
MY1 (2019) Monitoring Report	October 2019	November 2019
Supplemental Planting		January 31, 2020
MY 2 (2020) Vegetation Data Collection	October 2020	
MY 2 (2020) Stream Data Collection	July/October 2020	
MY 2 (2020) Monitoring Report	October 2020	November 2020
MY 3 (2021) Vegetation Data Collection	October 2021	
MY 3 (2021) Stream Data Collection	March 2021	
MY 3 (2021) Monitoring Report	October 2021	January 2022
MY 4 (2022) Vegetation Data Collection	NA	
MY 4 (2022) Stream Data Collection	NA	
MY 4 (2022) Monitoring Report	October 2022	November 2022
MY 5 (2023) Vegetation Data Collection	August 25, 2023	
MY 5 (2023) Stream Data Collection	May 16, 2023	
MY 5 (2023) Monitoring Report	October 2023	February 2024

Table 3. Project Contacts Table - Major Hill Restoration Site

Full Delivery Provider	Construction Contractor
Restoration Systems	Land Mechanic Designs
1101 Haynes Street, Suite 211	780 Landmark Road
Raleigh, North Carolina 27604	Willow Spring, NC 27592
Worth Creech 919-755-9490	Lloyd Glover 919-639-6132
Designer	Planting Contractor
Axiom Environmental, Inc.	Carolina Silvics, Inc.
218 Snow Avenue	908 Indian Trail Road
Raleigh, NC 27603	Edenton, NC 27932
Grant Lewis 919-215-1693	Mary-Margaret McKinney 252-482-8491
Construction Plans and Sediment and	As-built Surveyor
Erosion Control Plans	K2 Design Group
Sungate Design Group, PA	5688 US Highway 70 East
915 Jones Franklin Road	Goldsboro, NC 27534
Raleigh, NC 27606	John Rudolph 919-751-0075
Joshua G. Dalton, PE 919-859-2243	
	Baseline & Monitoring Data Collection
	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table - Major Hill Restoration Site


Pr	oject Information					
Project Name	Ma	jor Hill Restoration Sit	e			
Project County	Alamar	Alamance County, North Carolina				
Project Area (acres)		16.7				
Project Coordinates (latitude & latitude)	35	5.873206, -79.360906				
Planted Area (acres)		8.11				
Project Wate	rshed Summary Information					
Physiographic Province		Piedmont				
Project River Basin		Cape Fear				
USGS HUC for Project (14-digit)		03030002050050				
NCDWR Sub-basin for Project		03-06-04				
Project Drainage Area (acres)		17 to 445				
Percentage of Project Drainage Area that is Impervious		<2%				
CGIA Land Use Classification	Managed Herbaced	ous Cover & Mixed Up	oland Hardwoods			
Reach	Summary Information					
Parameters	UT 1	UT 2	UT 3			
Length of reach (linear feet)	2796	207	2298			
Valley Classification & Confinement	Alluvial, mo	oderately confined to	confined			
Drainage Area (acres)	71.7	17.2	444.7			
NCDWR Stream ID Score	20.25 – 33.5					
Perennial, Intermittent, Ephemeral	Intermittent/Perennial	Intermittent	Perennial			
NCDWR Water Quality Classification		WS-V, NSW				
Existing Morphological Description (Rosgen 1996)	Cg5	C4/5	C3			
Proposed Stream Classification (Rosgen 1996)	C/E 4	C4/5	C3			
Existing Evolutionary Stage (Simon and Hupp 1986)	III/IV	III	I			
Underlying Mapped Soils	Efland silt loam, George loam, Worsha	ville silt loam, Herndo m sandy loam, Local A				
Drainage Class	Well-drained, well-drained	d, well-drained, poorl				
Hydric Soil Status	Nonhydric, nonhydr	ic, nonhydric, nonhyd respectively	ric, hydric, hydric,			
Slope	0.0241	0.0256	0.0130			
FEMA Classification		NA	•			
Native Vegetation Community	Piedmont Alluvial	Forest/Dry-Mesic Oal	k-Hickory Forest			
Watershed Land Use/Land Cover (Site)		45% forest, 35% agricultural land, 20% low density residential/impervious surface				
Watershed Land Use/Land Cover (Cedarock Reference Channel)		6 agricultural land, <59 ential/impervious surf	-			
Percent Composition of Exotic Invasive Vegetation		<5%				


Table 4. Project Attribute Table - Major Hill Restoration Site (Continued)

Wetland Summary Information				
Parameters	Wetlands			
Wetland acreage	0.54 acre drained or impounded & 0.44 acre degraded			
Wetland Type	Riparian riverine			
Mapped Soil Series	Worsham and Local Alluvial Land			
Drainage Class	Poorly drained			
Hydric Soil Status	Hydric			
Source of Hydrology	Groundwater, stream overbank			
Hydrologic Impairment	Incised streams, compacted soils, livestock			
Native Vegetation Community	Piedmont/Low Mountain Alluvial Forest			
% Composition of Exotic Invasive Vegetation	<5%			
Restoration Method	Hydrologic, vegetative			
Enhancement Method	Vegetative			

Appendix B Visual Assessment Data

Figure 1. Project Location
Figure 2. Current Conditions Plan View
Tables 5A-5B. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Vegetation Plot Photographs
Site Photo Log

CURRENT CONDITIONS PLAN VIEW Major Hill Stream and Wetland Mitigation Alamance County, North Carolina Dwn. By: KRJ FIGURE

Date: Oct 2023

Project: 17-009

Table 5A Reach ID Assessed Length Visual Stream Morphology Stability Assessment

Major Hill UT-1 1699

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	71	71			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	70	70			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	70	70			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	70	70			100%			
		Thalweg centering at downstream of meander (Glide)	70	70			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	26	26			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	26	26			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	26	26			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	26	26			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	26	26			100%			

Table 5B Reach ID Assessed Length

Visual Stream Morphology Stability Assessment

Major Hill UT-2

39

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	<u>Texture/Substrate</u> - Riffle maintains coarser substrate	2	2			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	2	2			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	2	2			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	2	2			100%			
		Thalweg centering at downstream of meander (Glide)	2	2			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	0	0			NA			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	0	0			NA			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	0	0			NA			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	0	0			NA			

Table 6

Vegetation Condition Assessment

Major Hill

Planted Acreage

8.1

- iuiiiou / ioi ougo	0.1					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	None	0.1 acres	none	0	0.00	0.0%
2. Low Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
2B. Low Planted Stem Density Areas	None	0.1 acres	none	0	0.00	0.0%
Total					0.00	0.0%
3. Areas of Poor Growth Rates or Vigor	None	0.25 acres	none	0	0.00	0.0%
Cumulative Tota					0.00	0.0%

Easement Acreage²

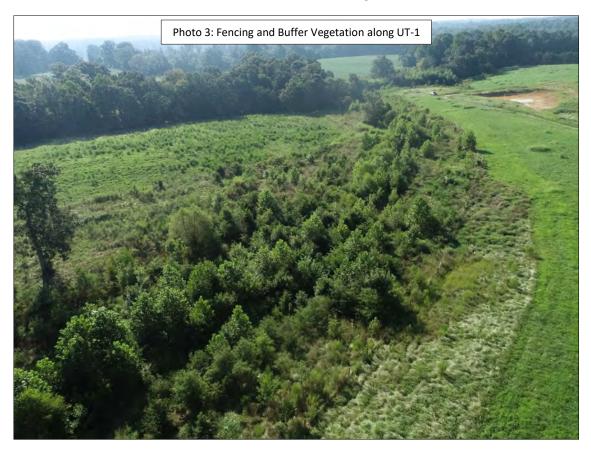
16.7

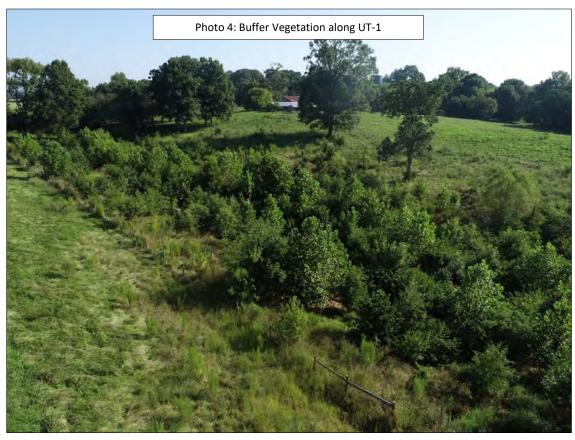
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	None	1000 SF	none	0	0.00	0.0%
5. Easement Encroachment Areas ³	None	none	pink crosshatch	1	0.04	0.2%

- 1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.
- 2 = The acreage within the easement boundaries.
- 3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.
- 4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, density or distribution is suppressing the viability, or growth of planted woody stems. Decisions as to whether remediation will be needed are based on the integration of risk factors by DMS such as species present, their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Knotweed early in the projects history will warrant control, but potentially large coverages of Microstegium in the herb layer will not likley trigger control because of the limited capacities to impact tree/shrub layers within the timeframes discussed and the projects microstic impact tree/shrub layers within the timeframes discussed and the projects of treatment interest given their extreme risk/threat level for mapping as points where isolated specimens are found, particularly ealry in a projects monitoring history. However, areas of discreet, dense patches will of course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and dense, discreet patches. In any case, the point or polygon/area feature can be symbolized to describe t

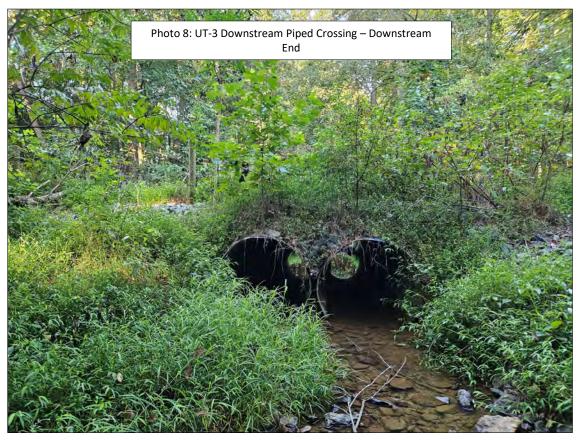
Major Hill MY-05 (2023) Vegetation Monitoring Photographs Taken August 25, 2023

Major Hill MY-05 (2023) Vegetation Monitoring Photographs (continued) Taken August 25, 2023

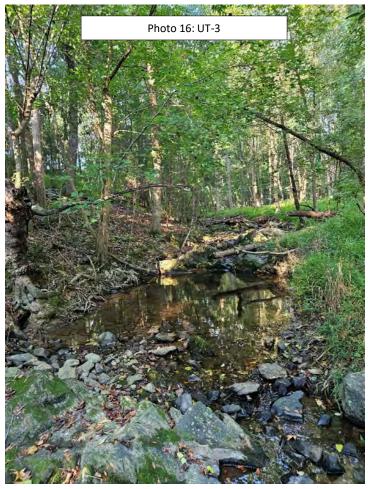



Major Hill MY-05 (2023) Photo Log

Major Hill MY-05 (2023) Photo Log



Major Hill MY-05 (2023) Photo Log



Appendix C Vegetation Data

Table 7. Planted Bare Root Woody Vegetation
Table 8. Total Stems by Plot and Species
Table 9. Temporary Vegetation Plot Data
Table 10. Planted Vegetation Totals
Height Data

Table 7. Planted Bare Root Woody Vegetation – Major Hill Restoration Site

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Acres	1.1	5.5	0.01	1.5	8.11
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600
Stems/Acre	682	680	2600	2722	1060

^{*}Live stakes of Salix nigra were planted; all other planted species were planted as bare root plants.

Table 8. Total Stems by Plot and Species
DMS Project Code 17.009. Project Name: Major Hill

											Current Plot D	ata (MY	5 2023)														An	nual Means					
			17.0	009-01-	0001	17.009-01	-0002	17.0	09-01-0003	17.	.009-01-0004	17.0	09-01-0	0005	17.0	09-01-0	006	17.0	09-01-0	007	17.009-01-0	800	MY5 (202	23)	M	1Y3 (20	21)	N	/IY2 (2020)	MY1 (20	19)	P	MY0 (20	J19)
Scientific Name	Common Name	Species Type	PnoLS	P-all	T	PnoLS P-all	T	PnoLS	P-all T	PnoL	S P-all T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all 1	Γ	PnoLS P-all 1	Γ	PnoLS P-all	T	PnoLS	P-all	T	PnoLS	P-all T	PnoLS P-all	T	PnoL!	LS P-all	T
Acer rubrum	red maple	Tree																														3		
Asimina triloba	pawpaw	Tree																1	1	1			1 1	:	1 2	2	2	2 2	2 2 7	2 3 3	3	3	7	7 7
Betula nigra	river birch	Tree									1 1 1							1	1	1	1 1	1	3 3	;	3	3	3	3 /	4 4	1 6 (6 (6 '	9	9 5
Carpinus caroliniana	American hornbeam	Tree	1	. 1	1	3	3 3	4	4	4					2	2	2				1 1	1	11 11	1	1 11	. 13	11	1 10	0 10 10	14 14	4 14	4 '	5	5 5
Cercis canadensis	eastern redbud	Tree						2	2	2											2 2	2	4 4		4 4	. 4	. 4	4 .5	5 '	8 8	8 8	8 1	4 1	4 14
Cornus amomum	silky dogwood	Shrub																												2	2 2	2	1	1 1
Diospyros virginiana	common persimmon	Tree				1	1 2	1	1	1	1 1 1	1	1	1	1	1	1				4 4	4	9 9	10	8 0	8	10	5 6	9 10	9 9	9 9	9 !	5	5 5
Fraxinus	ash	Tree																			1 1	1	1 1		1 1	. :	1 1	1 1	1 1	1 1 :	1 :	1	1	1 1
Fraxinus americana	white ash	Tree													3	3	3				1 1	1	4 4		4 5	5 5	5 5	5 .5	5 '	5 5 !	5 !	5 '	5	5 5
Fraxinus pennsylvanica	green ash	Tree	2	2	16						1 1 1	. 1	1	1				1	1	1			5 5	19	9 5		5 8	3 .5	5 /	3 4 4	4	4 1	3	3 ?
Liquidambar styraciflua	sweetgum	Tree																													1	2		
Liriodendron tulipifera	tuliptree	Tree	1	. 1	1																		1 1		1 1	. :	1 1	1 1	1 1	1 1 :	1 :	1 '	5	5 5
Nyssa sylvatica	blackgum	Tree																							2	2	2 2	2 7	2 2 1	2 4 4	1 4	4 1	0 1	.0 10
Platanus occidentalis	American sycamore	Tree				1	1 1					1	1	1	2	2	2						4 4		4 4	. 4	. 5	5 5	5 '	7	7 8	8	7	7 7
Quercus	oak	Tree	1	. 1	1																		1 1		1 1	. :	. 1	1 7	2 2 1	2 3 3	3	3 2	23 2	:3 23
Quercus nigra	water oak	Tree									1 1 1	. 4	4	4	3	3	3	3	3	3	1 1	1	12 12	1	2 12	12	2 12	2 17	2 12 12	2 20 20) 20	0 1/	0 1	0 10
Quercus phellos	willow oak	Tree				2	2 2	3	3	3					1	1	1	5	5	5	3 3	4	14 14	1	5 13	13	14	4 17	2 12 12	2 16 16	5 16	6 1	8 1	.8 18
Quercus rubra	northern red oak	Tree																									1	1						
Unknown		Shrub or Tree																														1	6	6 f
		Stem count	5	5 5	19	7	7 8	10	10 1	.0	4 4 4	7	7	7	12	12	12	11	11	11	14 14	15	70 70	8	5 72	72	2 80	J 7:	5 75 79	103 103	3 109	9 129	29 12	9 129
		size (ares)		1	•	1			1		1		1			1			1		1		8			8			8	8			8	-
		size (ACRES)		0.02		0.02			0.02		0.02		0.02			0.02			0.02		0.02		0.20			0.20			0.20	0.20			0.20	,
		Species count	: 4	4	4	4	4 4	4	4	4 4	4 4 4	4	4	4	6	6	6	5	5	5	8 8	8	13 13	1	3 14	14	15	5 14	14 1 ₀	1 15 1	5 17	7 1	6 1	.6 16
		Stems per ACRE	202.3	202.3	768.9	283.3 283.	3 323.7	404.7	404.7 404.	7 161.	9 161.9 161.9	283.3	283.3	283.3	485.6	485.6	485.6	445.2	445.2	445.2	566.6 566.6	607	354.1 354.1	43.	364.2	364.2	404.7	7 379.4	4 379.4 399.6	5 521 52:	1 551.4	4 652.	.6 652.	6 652.6

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%
Fails to meet requirements, by less than 10%
Fails to meet requirements by more than 10%

PnoLS = Planted excluding livestakes
P-all = Planting including livestakes
T = All planted and natural recruits including livestakes

T includes natural recruits

Table 9. Temporary Vegetation Plot Data – Major Hill Restoration Site

Species	50m x 2m Te (Bea	•
	T-1 (10°)	T-2 (345°)
Carpinus caroliniana	5	
Diospyros virginiana		8
Fraxinus pennsylvanica	6	
Platanus occidentalis	2	1
Quercus nigra		1
Quercus pagoda	3	1
Total Stems	16	11
Total Stems/Acre	648	445

Table 10. Planted Vegetation Totals – Major Hill Restoration Site

Plot #	Success Criteria Met?	MY 5 (2023) Planted Stems/Ac	MY 5 (2023) All Stems/Ac
1	No	202	769
2	Yes	283	324
3	Yes	405	405
4	No	162	162
5	Yes	283	283
6	Yes	486	486
7	Yes	445	445
8	Yes	567	607
T-1	Yes		648
T-2	Yes		445
Average Planted Stems/Acre	Yes	354	457

Plot	SCIENTIFIC NAME	х	Υ	Height (cm)	DBH	Vigor	Height (ft)	Plot Ave Height (ft)	Plot Ave Height (f 6 tallest stems* (> stems/ac)
1	Liriodendron tulipifera	7.3	1.3	240	0.2	3	7.87		
1	Carpinus caroliniana	9.2	4.1	251	0.25	2	8.23		5.74
1	Quercus	6.6	4.7	151	0.25	4	4.95	5.71	5.71
1	Fraxinus pennsylvanica	1.6	3.8 9.7	118 110	0.25 0.1	3	3.87		
2	Fraxinus pennsylvanica Quercus phellos	6.7 2.9	0.5	360	3	4	3.61 11.81		
2	Carpinus caroliniana	4.8	3.4	160	0.25	4	5.25		
2	Carpinus caroliniana	7.1	6.5	69	0.23	3	2.26		
2	Platanus occidentalis	10.0	7.1	230	1.5	4	7.55	6.46	7.16
2	Quercus phellos	1.6	5.9	280	2	4	9.19	0.40	7.10
2	Diospyros virginiana	7.8	2.6	165	0.5	4	5.41		
2	Carpinus caroliniana	7.5	4.6	114	0.5	4	3.74		
3	Carpinus caroliniana	2.4	1.4	340	2	4	11.15		
3	Quercus phellos	5.3	1.4	260	1.5	4	8.53	1	
3	Carpinus caroliniana	8.1	1.3	71	1.0	4	2.33		
3	Carpinus caroliniana	6.8	2.7	110		4	3.61		
3	Quercus phellos	10.0	3.0	120	0.5	4	3.94	1	
3	Carpinus caroliniana	6.3	5.3	50	0.5	3	1.64	6.45	9.84
3	Cercis canadensis	4.2	10.0	10		4	0.33		
3	Cercis canadensis	1.3	10.0	35		4	1.15		
3	Diospyros virginiana	1.3	8.1	770	1.5	4	25.26	1	
3	Quercus phellos	1.7	5.3	200	0.5	4	6.56	1	
4	Fraxinus pennsylvanica	7.6	0.9	86	0.5	4	2.82		
4	Betula nigra	7.6	3.3	61		4	2.00		
4	Quercus nigra	6.2	8.0	60		4	1.97	2.77	2.77
4	Diospyros virginiana	2.4	7.2	131	0.1	4	4.30		
5	Quercus nigra	0.3	1.0	240	2.5	4	7.87		
5	Platanus occidentalis	2.8	0.1	370	5	4	12.14		
5	Fraxinus pennsylvanica	2.1	3.7	265	2	4	8.69		
5	Diospyros virginiana	5.1	4.3	50	2	4	1.64	6.37	7.16
5		5.5	1.2	100		4	3.28	0.57	7.10
5	Quercus nigra	7.5	8.0	110		4			
5	Quercus nigra	0.2	6.5	225	0.25	4	3.61 7.38	•	
6	Quercus nigra Quercus nigra	2.2	0.3	190	0.25	4	6.23		
6		3.0	2.7	95	0.23	3	3.12		
6	Carpinus caroliniana Diospyros virginiana	0.9	3.4	205	1	4	6.73	•	
			0.8			4		•	
6	Quercus phellos	6.5 8.4	2.4	205	1.5	4	6.73 6.56		
6	Carpinus caroliniana	9.8	3.9	210	1.5	4	6.89	•	
6	Quercus nigra Platanus occidentalis	7.6	4.8	310	4	4	10.17	7.98	9.92
6		9.0	7.0	380	2.5	4	12.47		
6	Fraxinus americana Fraxinus americana	6.8	7.0	285	2.5	4	9.35	•	
6		4.6	8.0	290	2.5	4	9.51	•	
6	Fraxinus americana	0.5	8.1	230	0.5	4	7.55	•	
6	Quercus nigra Platanus occidentalis	2.2	6.7	320	2	4	10.50		
		4.8				4			
7	Quercus phellos	_	0.9	340	2.5		11.15		
7	Quercus phellos	5.3	3.0	390	5	4	12.80	1	
7	Betula nigra	5.7	4.9	290	1.75	4	9.51	-	
7	Quercus nigra	7.6	3.5	193	0.25	4	6.33	1	
7	Quercus phellos	8.8	1.2	290	2.75	4	9.51	10.19	11 76
7	Asimina triloba	8.5	6.1	340	4.5	4	11.15	10.18	11.76
7	Quercus phellos	6.3	7.1	360	3.75	4	11.81	1	
7	Quercus nigra	8.8	8.5	380	4.5	4	12.47	1	
7	Quercus nigra	1.2	6.9	250	1 75	4	8.20	1	
7	Quercus phellos	1.7	5.1	240	1.75	4	7.87	1	
7	Fraxinus pennsylvanica	3.6	8.2	340	2.75	4	11.15		
8	Diospyros virginiana	4.3	1.5	165	0.25	4	5.41	1	
8	Fraxinus Diospyros virginiana	4.8	3.2	150	0.25	4	4.92	1	
8	Diospyros virginiana	1.3	4.6	160	0.25	4	5.25	1	
	Cercis canadensis	7.3	0.4	40	0.1		1.31	1	
8	Fraxinus americana	9.9	2.9	130	0.1	4	4.27	1	
8	Betula nigra	7.3	2.8	110	0.35	4	3.61		
8	Quercus nigra	5.1	5.0	195	0.25	4	6.40	4.00	6.74
8	Carpinus caroliniana	7.5	5.7	95		4	3.12	4.82	6.71
8	Cercis canadensis	9.8	6.0	50		4	1.64	-	
8	Quercus phellos	7.4	6.2	280	1.5	4	9.19	-	
8	Diospyros virginiana	7.2	7.6	225	1	4	7.38	-	
8	Quercus phellos	8.4	8.7	190	0.5	4	6.23	-	
8	Fraxinus americana	5.0	8.5	92		4	3.02	-	
8	Diospyros virginiana	3.0	7.1	172	0.5	4	5.64	1	
8	Quercus phellos	1.7	9.2	151	0.25	4	4.95	Ì	1

^{*} Where applicable. For plots that contain <6 stems, this number represents the average of all stems in the plot.

Appendix D Stream Geomorphology Data

Tables 11A-11B. Baseline Stream Data Summary

Tables 12A-12D. Monitoring Data (Dimensional Morphology Summary & Stream Reach Data Summary)

Table 13. Water Quality Data

Cross-Section Plots

Table 11a. Baseline Stream Data Summary (UT 1 Upstream) Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge]	Regional C	urve	Pre	Existing Up	g Condi ostream		۲1		Referenc	e Reach(e	es) Data			esign (UT Jpstream		M	onitorin	g Baselin	ne (UT 1	Upstrea	m)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					3.8		5.6	6.4		8.0		9.6	12.1		5.6	6.4	6.0	6.0		10.9	11.8		3
Floodprone Width (ft)					11.0		27.0	48.0		15		75	140		20	60	40	23		40	40		3
BF Mean Depth (ft)					0.3		0.5	0.7		0.8		1.1	1.4		0.4	0.5	0.4	0.3		0.5	0.6		3
BF Max Depth (ft)					0.7		0.9	1.3		1.1		1.7	2.0		0.5	0.7	0.6	0.7		0.8	1.1		3
BF Cross Sectional Area (ft ²)					2.6		2.6	2.6		8.0		11.4	14.7		2.6	2.6	2.6	3.0		3.5	7.1		3
Width/Depth Ratio					5.4		13.4	27.0		8.0		9.6	15.1		12.0	16.0	14.0	12.0		19.6	33.9		3
Entrenchment Ratio					1.4		5.8	12.6		1.9		7.1	13.0		3.6	9.3	6.6	3.4		3.7	3.8		3
Bank Height Ratio					1.0		1.4	1.7		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.3		3
Profile									1			•					1						
Riffle length (ft)																		5		16	47		3
Riffle slope (ft/ft)						1				0.0100		0.0207	0.0576		0.0268	0.0401	0.0357	0.0000			0.0539		3
Pool length (ft)										010200		010=01				010101		4.0		13.0	28.0		3
Pool Max depth (ft)										1.5		2.3	2.7		0.6	0.9	0.8	1.3		2.0	2.5		3
Pool spacing (ft)										22.0		40.8	81.0		18.0	48.0	24.0	18.0		24.0	48.0		3
Pattern							•			•	•	•	•			•			•				
Channel Beltwidth (ft)										17		26.3	38		18	36	24	18		24	36		
Radius of Curvature (ft)						1				9		23.6	113		12	60	18	12		18	60		
Rc:Bankfull width (ft/ft)						1				0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		36	72	51	36		51	72		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
				•	-	•	•	•	•			•	•			•	•	-	•	•			
Transport parameters																							•
Reach Shear Stress (competency) lbs/ft ²																							
Max part size (mm) mobilized at bankfull						1																	
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters					1		G 5			1		T1 5				E/C 4				F/C	4		
Rosgen Classification							Cg 5					Eb 5				E/C 4				E/C-	type		
Bankfull Velocity (fps)							0.5				2	0.0				0.5				0	.5		
Bankfull Discharge (cfs)							9.5				2	8.8 - 60.6				9.5				9.	.5		
Valley Length (ft)																							
Channel Thalweg Length (ft)					1		1.07			1		1.0.1.1.5			1	1.00				4 .	00		
Sinuosity					1		1.07			1		1.2 - 1.46	70		1	1.08				1.0	08 195		
Water Surface Slope (ft/ft)							0.0225				0.00	053 - 0.025	<u> </u>			0.0223				0.0	193		
BF slope (ft/ft)					1					1					1								
Bankfull Floodplain Area (acres) % of Reach with Eroding Banks					1										1								
Channel Stability or Habitat Metric					1					 					1			1					
Biological or Other					1																		

Table 11b. Baseline Stream Data Summary (UT 1 Downstream) Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter	Gauge]	Regional C	urve	Pre-Existing Condition (UT 1 Downstream) Eq. Min Mean Med Max SD						Reference	e Reach(e	es) Data			sign (UT wnstreai		Mo	nitoring	Baseline	(UT 1 D	ownstre	am)
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD	n
BF Width (ft)					4.9		6.7	8.7		8.0		9.6	12.1		6.8	7.8	7.3	8.6		10.3	11.8		3
Floodprone Width (ft)					9.0		14.0	21.0		15		75	140		25	75	50	22		40	40		3
BF Mean Depth (ft)					0.4		0.6	0.8		0.8		1.1	1.4		0.4	0.8	0.6	0.4		0.6	0.6		3
BF Max Depth (ft)					0.7		0.9	1.2		1.1		1.7	2.0		0.6	0.8	0.7	0.7		0.9	1.2		3
BF Cross Sectional Area (ft ²)					3.8		3.8	3.8		8.0		11.4	14.7		3.8	3.8	3.8	3.5		5.8	7.5		3
Width/Depth Ratio					6.1		13.1	21.8		8.0		9.6	15.1		12.0	16.0	14.0	18.0		18.0	21.0		3
Entrenchment Ratio					1.4		2.2	4.3		1.9		7.1	13.0		3.7	9.6	6.9	2.6		3.4	3.9		3
Bank Height Ratio					1.6		2.2	2.8		1.0		1.2	1.8		1.0	1.3	1.2	1.0		1.0	1.0		3
Profile						ı															ı		
Riffle length (ft)																		5		16	47		1
Riffle slope (ft/ft)										0.0100		0.0207	0.0576		0.0000	0.0297	0.0264	0.0000		0.0252	0.0539		1
Pool length (ft)												313231	313213		0.0000	010_2		4.0		13.0	28.0		1
Pool Max depth (ft)										1.5		2.3	2.7		0.7	1.1	1.0	1.7		1.7	1.7		1
Pool spacing (ft)										22.0		40.8	81.0		21.9	58.4	29.2	18.0		24.0	48.0		1
Pattern									•	•		•	•	•	•			-		•			
Channel Beltwidth (ft)										17		26.3	38		21.9	43.8	29.2	22		29	44		
Radius of Curvature (ft)										9		23.6	113		14.6	72.9	21.9	14		22	73		
Rc:Bankfull width (ft/ft)										0.8		2.4	10.3		2	10	3	2		3	10		
Meander Wavelength (ft)										10		65.7	116		43.8	87.5	62	44		62	88		
Meander Width ratio										1.5		2.7	4.7		3	6	4	3		4	6		
Transport parameters																							
Reach Shear Stress (competency) lbs/ft ²																							1
Max part size (mm) mobilized at bankfull																							
Stream Power (transport capacity) W/m ²																							
Additional Reach Parameters																							
Rosgen Classification		I					Cg 5			1		Eb 5			1	E/C 4		<u> </u>		E/C-	type		
Bankfull Velocity (fps)							~ ₅ J					LU J				<i>L</i> / C +				- Li C	-7 P -		
Bankfull Discharge (cfs)							14.2				2.	8.8 - 60.6				14.2				14	.2		
Valley Length (ft)							11.2					0.0 00.0				11,2				1.1			
Channel Thalweg Length (ft)																							
Sinuosity		1					1.26				1	1.2 - 1.46				1.12				1.	12		-
Water Surface Slope (ft/ft)		1					0.0147					053 - 0.025	58			0.0165				0.0			
BF slope (ft/ft)																							
Bankfull Floodplain Area (acres)																							
% of Reach with Eroding Banks																							
Channel Stability or Habitat Metric																							
Biological or Other																							

Table 12a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Major Hill Mitigation Project - NCDMS Project Number 100015

		Cr	oss Section	n 1 (UT 1	Downstre	am)			Cre	oss Section	n 2 (UT 1	Downstre	am)			Cre	oss Sectio	n 3 (UT 1	Downstre	am)			Cro	ss Section	14 (UT 1	Downstre	am)	
Parameter				Riffle							Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+
BF Width (ft)	11.8	11.2	12.6	12.7	14.1			8.6	7.4	7.8	7.7	9.3			13.0	12.5	13.1	12.6	12.5			10.3	10.4	12.8	10.8	12.7		
Floodprone Width (ft) (approx)	40.0	40.0	40.0	40.0	40.0			22.0	22.0	22.0	22.0	22.0			NA	NA	NA	NA	NA			40.0	40.0	40.0	40.0	40.0		
BF Mean Depth (ft)	0.6	0.7	0.6	0.6	0.5			0.4	0.5	0.4	0.4	0.4			0.6	0.7	0.6	0.7	0.7			0.6	0.6	0.5	0.5	0.5		
BF Max Depth (ft)	1.2	1.2	1.2	1.2	1.3			0.7	0.7	0.7	0.7	0.8			1.7	1.6	1.6	1.7	1.7			0.9	1.1	1.1	1.1	1.1		
Low Bank Height	1.2	1.3	1.2	1.3	1.3			0.7	0.8	0.7	0.7	0.7			1.7	1.7	1.7	1.3	1.6			0.9	1.1	1.1	1.1	1.1		
BF Cross Sectional Area (ft ²)	7.5	7.5	7.5	7.5	7.5			3.5	3.5	3.5	3.5	3.5			8.4	8.4	8.4	8.4	8.4			5.8	5.8	5.8	5.8	5.8		
Width/Depth Ratio	18.6	16.7	21.2	21.2	26.5			21.1	15.6	17.4	17.1	24.6			NA	NA	NA	NA	NA			18.3	18.6	28.2	21.6	28.0		
Entrenchment Ratio	3.4	3.6	3.2	3.1	2.8			2.6	3.0	2.8	2.9	2.4			NA	NA	NA	NA	NA			3.9	3.8	3.1	3.7	3.1		
Bank Height Ratio*	1.0	1.08	1.0	1.08	1.0			1.0	1.14	1.0	1.0	1.0			1.0	1.06	1.06	<1	1.0			1.0	1.0	1.0	1.0	1.0		
d50 (mm)	25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7			

^{*}Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

Table 12b. Monitoring Data - Stream Reach Data Summary

Parameter		Bas	seline (UT	1 Downstr	ream)			MY	-1 (UT 1 I	Downstre:	am)			MY	Y-2 (UT 1	Downstr	ream)			MY	-3 (UT 1	Downstre	am)			MY-	5 (UT 1 I	Oownstream)			MY-7	7 (UT 1 D	ownstrea	m)	
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n 1	Min	Mean	Med	Max	SD	r
BF Width (ft)	8.6		10.3	11.8		3	7.4		10.4	11.2		3	7.8		12.6	12.8		3	7.7		10.8	12.7			9.3		12.7	14.1								$\overline{}$
Floodprone Width (ft)	22		40	40		3	22		40	40		3	22		40	40		3	22		40	40			22		40	40								1
BF Mean Depth (ft)	0.4		0.6	0.6		3	0.5		0.6	0.7		3	0.4		0.5	0.6		3	0.4		0.5	0.6			0.4		0.5	0.5								
BF Max Depth (ft)	0.7		0.9	1.2		3	0.7		1.1	1.2		3	0.7		1.1	1.2		3	0.7		1.1	1.2			0.8		1.1	1.3								
BF Cross Sectional Area (ft ²)	3.5		5.8	7.5		3	3.5		5.8 7.5 3 3.5 5.8 7.5 3 3.5 5.8 7.5 3.5 24.6 26.5 28.0 3.1 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1															ı												
Width/Depth Ratio	18.0		18.0	21.0		3	15.6																	$\overline{}$												
Entrenchment Ratio	2.6		3.4	3.9		3	3.0																													
Bank Height Ratio	1.0		1.0	1.0		3	1.0																													
		ofile																																		
Riffle length (ft)			16	47		1																														
Riffle slope (ft/ft)				0.0539		1	_																													
Pool length (ft)	4.0		13.0	28.0		1																														
Pool Max depth (ft)	1.7		1.7	1.7		1																														
Pool spacing (ft)	18.0	_	24.0	48.0		1	1							Profile su	rvevs duri	ng the str	eam monito	ring neriod	l are not re	equired unl	less evide	nce of bed	and/or bank	nstabili	ty is obser	ved and the	e data is re	equested by f	ne IRT							
		tern					_							rioine su	reys dans	ing the str	oum mome	and period	i ure not r	equirea, am	less evide.	nee or oea	una, or bunk	113440111	cy is obser	vea and the	data is re	equested by t								
Channel Beltwidth (ft)	22		29	44																																
Radius of Curvature (ft)	14		22	73																																
Rc:Bankfull width (ft/ft)	2		3	10																																
Meander Wavelength (ft)			62	88			4																													
Meander Width ratio	3		4	6																																
															Addi	itional Re	ach Param	ieters																		
Rosgen Classification			E/C	C type																																
Channel Thalweg Length (ft)																																				
Sinuosity				.12																																
Water Surface Slope (Channel) (ft/ft)			0.0	0195																																
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																																				
SC%/SA%/G%/C%/B%BE%																																				
d16/d35/d50/d84/d95																																				
% of Reach with Eroding Banks			· · ·	<u>-</u>	<u>-</u>									·			<u> </u>	·		·		· · ·			<u>-</u>	· · ·						·		·		
Channel Stability or Habitat Metric																																				
Biological or Other																																				

Table 12c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

Major Hill	Mitigation	Project -	NCDMS	Project	Number	100015

		C	ross Secti	on 5 (UT	1 Upstream	m)			C	ross Secti	on 6 (UT	1 Upstream	m)			C	ross Secti	on 7 (UT	1 Upstrea	m)			C	ross Sectio	on 8 (UT 1	Upstream	n)	
Parameter				Riffle							Pool							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+
BF Width (ft)	11.8	11.8	12.3	12.7	12.7			8.9	9.9	10.0	10.5	9.5			7.4	9.5	6.9	7.2	10.1			6.0	5.7	6.5	6.5	6.5		
Floodprone Width (ft) (approx)	40.0	40.0	40.0	40.0	40.0			NA	NA	NA	NA	NA			NA	NA	NA	NA	NA			23.0	23.0	23.0	23.0	23.0		
BF Mean Depth (ft)	0.6	0.6	0.6	0.6	0.6			1.0	0.9	0.9	0.9	1.0			1.6	1.2	1.7	1.6	1.2			0.5	0.5	0.5	0.5	0.5		
BF Max Depth (ft)	1.1	1.2	1.1	1.2	1.2			2.0	2.1	2.0	2.2	2.0			2.5	2.4	2.0	2.4	2.2			0.8	0.9	0.9	0.9	1.0		
Low Bank Height	1.1	1.2	1.1	1.1	1.3			2.0	2.2	2.2	2.4	1.9			2.5	2.5	2.2	2.6	2.2			0.8	0.9	1.0	0.8	0.9		
BF Cross Sectional Area (ft ²)	7.1	7.1	7.1	7.1	7.1			9.1	9.1	9.1	9.1	9.1			11.7	11.7	11.7	11.7	11.7			3.0	3.0	3.0	3.0	3.0		
Width/Depth Ratio	19.6	19.6	21.3	21.2	23.0			NA	NA	NA	NA	NA			NA	NA	NA	NA	NA			12.0	10.8	14.1	13.0	14.3		
Entrenchment Ratio	3.4	3.4	3.3	3.1	3.1			NA	NA	NA	NA	NA			NA	NA	NA	NA	NA			3.8	4.0	3.5	3.5	3.5		
Bank Height Ratio*	1.0	1.0	1.0	<1	1.08			1.0	1.0	1.10	1.09	1.0			1.0	1.0	1.10	1.08	1.0			1.0	1.0	1.11	<1	<1		
d50 (mm)	25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7			

		C	ross Secti	on 9 (UT 1	l Upstrea	m)			Cr	oss Sectio	n 10 (UT	1 Upstrea	m)	
Parameter				Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY5	MY7	MY7+	MY0	MY1	MY2	MY3	MY5	MY7	MY7+
BF Width (ft)	7.0	9.4	8.0	11.8	11.5			10.9	11.2	13.3	9.4	12.4		
Floodprone Width (ft) (approx)	NA	NA	NA	NA	NA			40.0	40.0	40.0	40.0	40.0		
BF Mean Depth (ft)	0.7	0.5	0.6	0.4	0.4			0.3	0.3	0.3	0.4	0.3		
BF Max Depth (ft)	1.3	1.2	1.3	1.2	1.2			0.7	0.6	0.6	0.6	0.6		
Low Bank Height	1.3	1.3	1.3	1.3	1.3			0.7	0.6	0.6	0.5	0.7		
BF Cross Sectional Area (ft ²)	4.9	4.9	4.9	4.9	4.9			3.5	3.5	3.5	3.5	3.5		
Width/Depth Ratio	NA	NA	NA	NA	NA			33.9	35.8	50.5	23.5	44.0		
Entrenchment Ratio	NA	NA	NA	NA	NA			3.7	3.6	3.0	4.3	3.2		
Bank Height Ratio*	1.0	1.08	1.0	1.08	1.06			1.0	1.0	1.0	<1	1.07		
d50 (mm)	25.4	33.0	4.9	3.7				25.4	33.0	4.9	3.7			

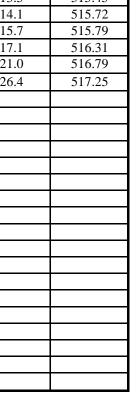
^{*}Bank Height Ratio is calculated based on the As-built (MY0) cross-sectional area as described in the Standard Measurement of the BHR Monitoring Parameter document produced by the technical industry work group consisting of the NCIRT, NCDMS, and Industry Practitioners in NC (9/2018).

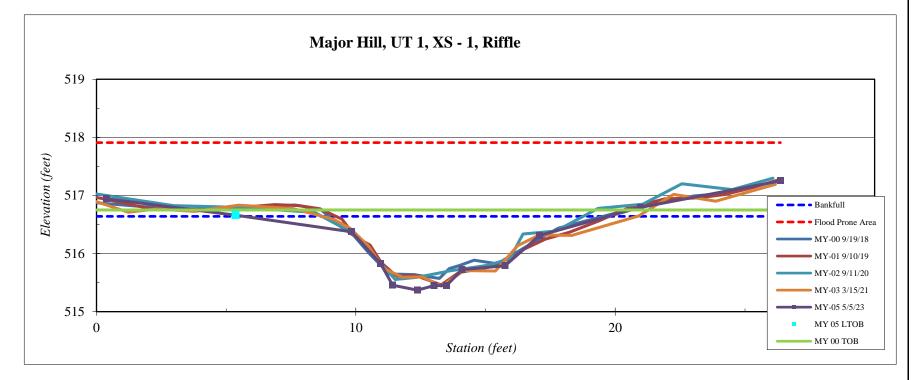
Table 12d. Monitoring Data - Stream Reach Data Summary

Major Hill Mitigation Project - NCDMS Project Number 100015

Parameter				Γ 1 Upstre	eam)			M	Y-1 (UT 1	1 Upstrea	m)			MY-2 (UT 1 Upstream) MY-3 (UT 1 Upstream)						MY-5 (UT 1 Upstream)						MY-7 (UT 1 Upstream)										
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	6.0		10.9	11.8		3	5.7		11.2	11.8		3	6.5		12.3	13.3	3	3	6.5		9.4	12.7		3	6.5		12.4	12.7								
Floodprone Width (ft)	23		40	40		3	23		40	40		3	23		40	40		3	23		40	40		3	23		40	40								
BF Mean Depth (ft)	0.3		0.5	0.6		3	0.3		0.5	0.6		3	0.3		0.5	0.6		3	0.4		0.5	0.6		3	0.3		0.5	0.6								
BF Max Depth (ft)	0.7		0.8	1.1		3	0.6		0.9	1.2		3	0.6		0.9	1.1		3	0.6		0.9	1.1		3	0.6		1.0	1.2								
BF Cross Sectional Area (ft ²)	3.0		3.5	7.1		3	3.0		3.5	7.1		3	3.0		3.5	7.1		3	3.0		3.5	7.1		3	3.0		3.5	7.1								
Width/Depth Ratio	12.0		19.6	33.9		3	10.8		19.6	35.8		3	14.1		21.3	50.5	i	3	14.1		22.7	25.2		3	14.3		23.0	44.0								
Entrenchment Ratio	3.4		3.7	3.8		3	3.4		3.6	4.0		3	3.0		3.3	3.5		3	3.1		3.5	4.3		3	3.1		3.2	3.5								
Bank Height Ratio	1.0		1.0	1.3		3	1.0		1.0	1.0		3	1.0		1.0	1.1		3	0.8		1.1	1.3		3	0.8		0.8	0.9								
	Pro	file																																		
Riffle length (ft)	5		16	47		3																														
Riffle slope (ft/ft)	0.0000		0.0252	0.0539		3																														
Pool length (ft)	4.0		13.0	28.0		3																														
Pool Max depth (ft)	1.3		2.0	2.5		3																														
Pool spacing (ft)	18.0		24.0	48.0		3								Profile si	irvevs duri	ing the st	tream monito	ring nerio	d are not r	equired ur	nless evide	ence of bed	and/or har	ık instahi	lity is obse	rved and t	he data is i	requested	by the IRT	,						
	Patt	tern												1 Torne se	ii veys dan	mg the st	iream mointe	ring perio	a are not r	equirea, ai	mess evide	nice of bec	and/or our	ik ilistaoi	11ty 15 005c	i ved and t	ne data is i	requested	by the fixt	•						
Channel Beltwidth (ft)	18		24	36																																
Radius of Curvature (ft)	12		18	60																																
Rc:Bankfull width (ft/ft)	2		3	10																																
Meander Wavelength (ft)	36		51	72																																
Meander Width ratio	3		4	6																																
															Add	litional P	Reach Paran	actors																		
Rosgen Classification			E/C	type											7144	itional iv	cach i aran	icters																		
Channel Thalweg Length (ft)				-JP-																																-
Sinuosity			1	.08									1																							
Water Surface Slope (Channel) (ft/ft))195																																
BF slope (ft/ft)																																				
Ri%/RU%P%G%/S%																																				
SC%/SA%/G%/C%/B%BE%																																				
d16/d35/d50/d84/d95														1	1			†			1	1					†					1	1	1		
% of Reach with Eroding Banks															•	•		•		•	•	•					•			•		•	•		•	+
Channel Stability or Habitat Metric																																				
Biological or Other													1																							

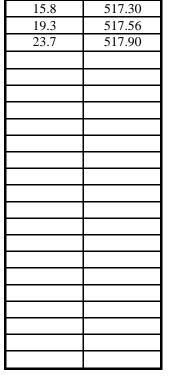
Table 13. Major Hill Water Quality Data – Major Hill Restoration Site

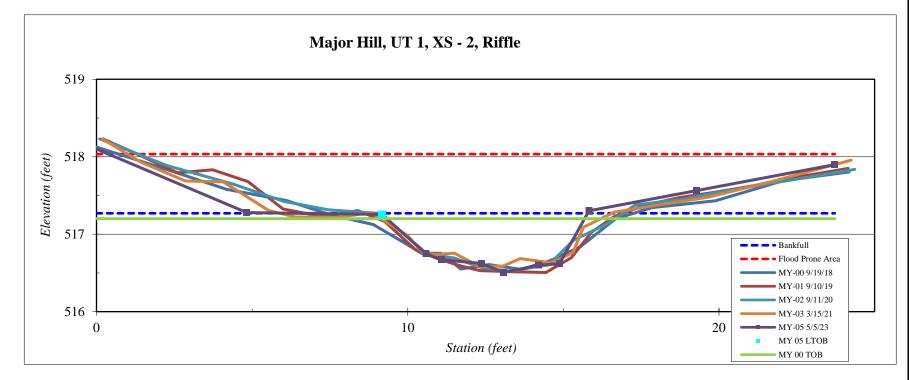

	Preconstruction				Year 1	(2019)	Year 2	(2020)	Year 3	(2021)	Year 4	(2022)	Year 5 (2023)	
	Upstream		eam Downstream		Upstream	Down- stream	Upstream	Down- stream	Upstream	Down- stream	Upstream	Down- stream	Upstream	Down- stream
Parameter	July 28, 2017	August 14, 2017	July 28, 2017	August 14, 2017	November 20, 2019	November 20, 2019	October 28, 2020	October 28, 2020	May 19, 2021	May 19 2021	November 8, 2022	November 8, 2022	June 29, 2023	June 29, 2023
TDS (ppm)	110.1	147	62.6	86.8	394	179	164.0	122.3	94.7	113.6	115.1	133.4	61.2	54.4
TDS (mg/l)	109.1	149	64.6	83.5	397	179	168.3	131.3	98.2	120.1	95.2	117.0	85.6	81.2
Conductivity (μS/cm)	159.2	215	92.1	128.3	557	252	242.1	186.9	135.4	162.3	151.3	107.6	120.4	107.1
Temperature (°C)	25.4	22.6	24.6	22.1	8	6.9	19.6	19.7	22.9	15.5	8.3	7.2	25.2	19.9
DO (mg/l)	-	1.93	-	3.06	-	-	5.36	7.64	5.68	7.16	6.36	7.31	4.23	6.55
DO (ppm)	-	1.06	-	2.53	-	-	5.42	7.72	5.71	7.25	6.16	7.13	4.10	6.26
рН	6.61	6.37	6.65	6.22	7	6.58	6.96	6.94	7.22	7.09	6.96	7.12	6.90	6.75


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 1, Riffle
Feature	Riffle
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
0.4	516.94
5.4	516.66
9.8	516.38
11.0	515.82
11.4	515.46
12.4	515.37
13.0	515.45
13.5	515.45
14.1	515.72
15.7	515.79
17.1	516.31
21.0	516.79
26.4	517.25
	_

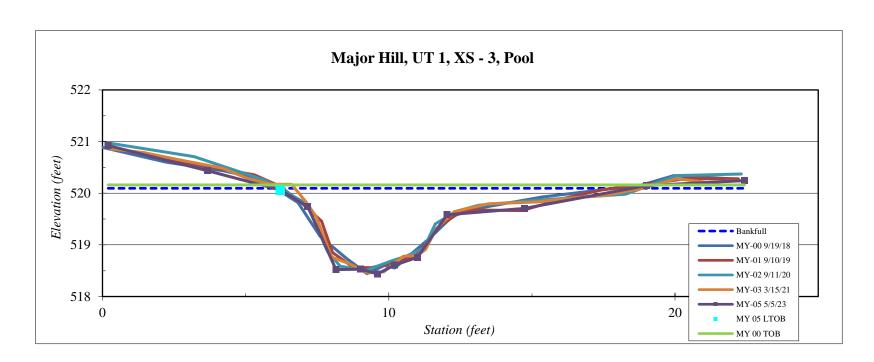
SUMMARY DATA	
Bankfull Elevation:	516.6
LTOB Elevation:	516.7
Bankfull Cross-Sectional Area:	7.5
Bankfull Width:	14.1
Flood Prone Area Elevation:	517.9
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.3
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.5
W / D Ratio:	26.5
Entrenchment Ratio:	2.8
Bank Height Ratio:	1.0




Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 2, Riffle
Feature	Riffle
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
-0.3	518.15
4.8	517.28
9.2	517.26
10.6	516.75
11.1	516.67
12.4	516.62
13.1	516.51
14.2	516.60
14.9	516.62
15.8	517.30
19.3	517.56
23.7	517.90

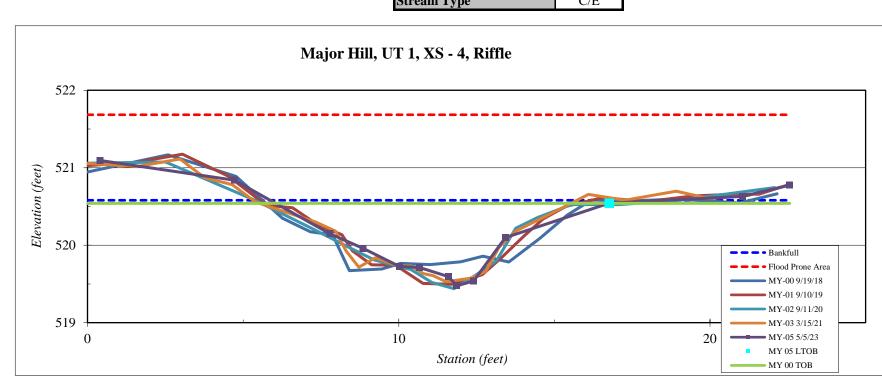
SUMMARY DATA	
Bankfull Elevation:	517.3
LTOB Elevation:	517.3
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	9.3
Flood Prone Area Elevation:	518.0
Flood Prone Width:	22.0
Max Depth at Bankfull:	0.8
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	24.6
Entrenchment Ratio:	2.4
Bank Height Ratio:	1.0



Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 3, Pool
Feature	Pool
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
0.2	520.9
3.7	520.4
6.2	520.1
7.2	519.7
8.2	518.5
9.0	518.5
9.6	518.4
10.2	518.6
11.0	518.8
12.0	519.6
14.7	519.7
19.0	520.1
22.4	520.2

SUMMARY DATA	
Bankfull Elevation:	520.1
LTOB Elevation:	520.1
Bankfull Cross-Sectional Area:	8.4
Bankfull Width:	12.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.7
Low Bank Height:	1.6
Mean Depth at Bankfull:	0.7
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 4, Riffle
Feature	Riffle
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
0.4	521.09
4.7	520.84
7.8	520.15
8.9	519.96
10.0	519.73
10.7	519.71
11.6	519.59
11.9	519.48
12.4	519.54
13.4	520.10
16.8	520.54
21.0	520.63
22.6	520.78

SUMMARY DATA	
Bankfull Elevation:	520.6
LTOB Elevation:	520.5
Bankfull Cross-Sectional Area:	5.8
Bankfull Width:	12.7
Flood Prone Area Elevation:	521.7
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.1
Low Bank Height:	1.1
Mean Depth at Bankfull:	0.5
W / D Ratio:	28.0
Entrenchment Ratio:	3.1
Bank Height Ratio:	1.0

Stream Type

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 5, Riffle
Feature	Riffle
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
0.4	525.18
4.6	524.61
6.4	524.18
7.8	523.85
8.4	523.40
8.8	523.34
9.4	523.35
9.9	523.40
10.4	523.44
11.1	523.86
13.5	523.92
16.2	524.34
19.7	524.77

SUMMARY DATA	
Bankfull Elevation:	524.5
LTOB Elevation:	524.6
Bankfull Cross-Sectional Area:	7.1
Bankfull Width:	12.7
Flood Prone Area Elevation:	525.7
Flood Prone Width:	40.0
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.6
W / D Ratio:	23.0
Entrenchment Ratio:	3.1
Bank Height Ratio:	1.08

Major Hill, UT 1, XS - 5, Riffle

526

525

524

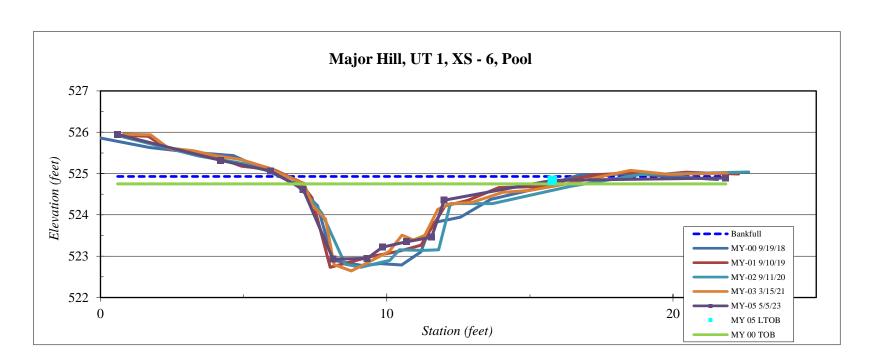
524

523

0

10

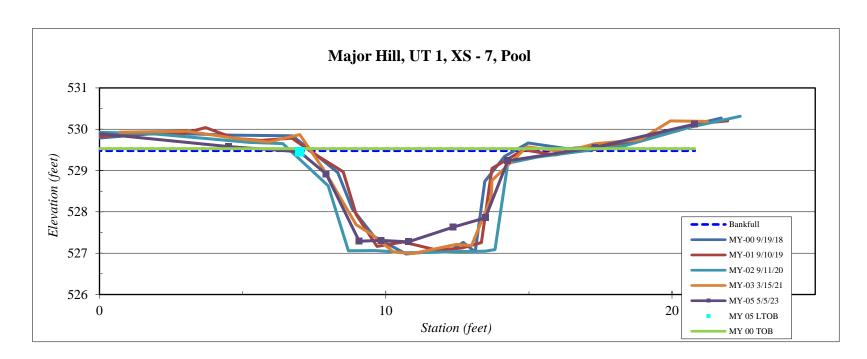
Station (feet)


Station (feet)

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 6, Pool
Feature	Pool
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
0.6	525.9
4.2	525.3
5.9	525.1
7.1	524.6
8.1	522.9
9.3	522.9
9.8	523.2
10.7	523.3
11.6	523.5
12.0	524.4
15.8	524.8
21.8	524.9

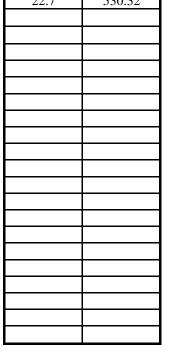
SUMMARY DATA	
Bankfull Elevation:	524.9
LTOB Elevation:	524.8
Bankfull Cross-Sectional Area:	9.1
Bankfull Width:	9.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.0
Low Bank Height:	1.9
Mean Depth at Bankfull:	1.0
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

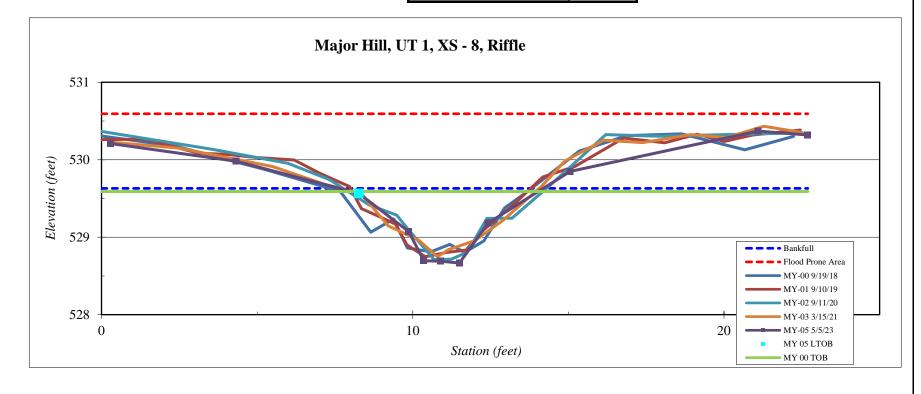

Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 7, Pool
Feature	Pool
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
-0.5	529.9
4.5	529.6
7.0	529.5
7.9	528.9
9.1	527.3
9.8	527.3
10.8	527.3
12.3	527.6
13.5	527.9
14.3	529.2
17.3	529.6
20.8	530.1

SUMMARY DATA	
Bankfull Elevation:	529.5
LTOB Elevation:	529.5
Bankfull Cross-Sectional Area:	11.7
Bankfull Width:	10.1
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	2.2
Low Bank Height:	2.2
Mean Depth at Bankfull:	1.2
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.0

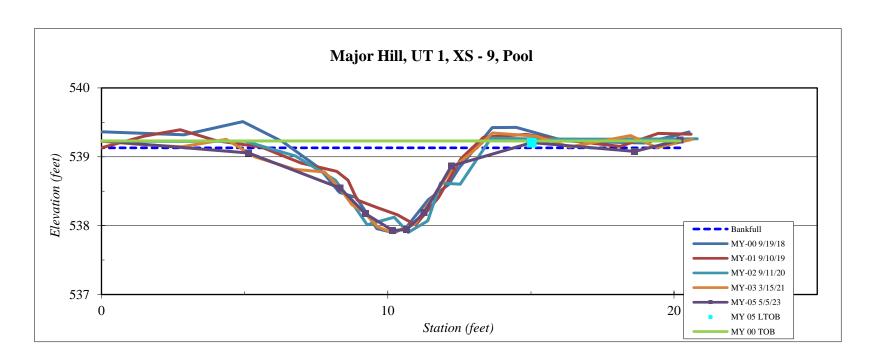
Stream Type	C/E
-------------	-----




Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 8, Riffle
Feature	Riffle
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
0.3	530.21
4.3	529.98
8.3	529.56
9.9	529.07
10.4	528.69
10.9	528.69
11.5	528.67
12.4	529.18
15.1	529.85
21.1	530.37
22.7	530.32

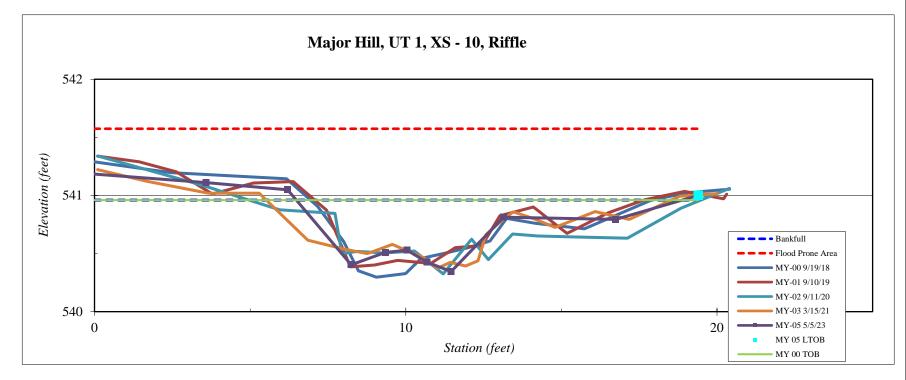
SUMMARY DATA	
Bankfull Elevation:	529.6
LTOB Elevation:	529.6
Bankfull Cross-Sectional Area:	3.0
Bankfull Width:	6.5
Flood Prone Area Elevation:	530.6
Flood Prone Width:	23.0
Max Depth at Bankfull:	1.0
Low Bank Height:	0.9
Mean Depth at Bankfull:	0.5
W / D Ratio:	14.3
Entrenchment Ratio:	3.5
Bank Height Ratio:	0.93



Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 9, Pool
Feature	Pool
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
-0.1	539.2
5.1	539.1
8.3	538.5
9.2	538.2
10.2	537.9
10.7	537.9
11.3	538.2
12.2	538.9
15.0	539.2
18.6	539.1
20.2	539.2

SUMMARY DATA	
Bankfull Elevation:	539.1
LTOB Elevation:	539.2
Bankfull Cross-Sectional Area:	4.9
Bankfull Width:	11.5
Flood Prone Area Elevation:	NA
Flood Prone Width:	NA
Max Depth at Bankfull:	1.2
Low Bank Height:	1.3
Mean Depth at Bankfull:	0.4
W / D Ratio:	NA
Entrenchment Ratio:	NA
Bank Height Ratio:	1.06


Site	Major Hill
Watershed:	Cape Fear, 0303002
XS ID	UT 1, XS - 10, Riffle
Feature	Riffle
Date:	5/16/2023
Field Crew:	Perkinson

Station	Elevation
-0.5	541.19
3.6	541.11
6.2	541.05
8.2	540.40
9.3	540.51
10.0	540.53
10.7	540.42
11.5	540.35
13.1	540.81
16.7	540.79
19.4	541.00
·	

SUMMARY DATA	
Bankfull Elevation:	541.0
LTOB Elevation:	541.0
Bankfull Cross-Sectional Area:	3.5
Bankfull Width:	12.4
Flood Prone Area Elevation:	541.6
Flood Prone Width:	40.0
Max Depth at Bankfull:	0.6
Low Bank Height:	0.7
Mean Depth at Bankfull:	0.3
W / D Ratio:	44.0
Entrenchment Ratio:	3.2
Bank Height Ratio:	1.07

Appendix E. Hydrology Data

Table 14A. UT1 Upstream Channel Evidence
Table 14B. UT1 Downstream Channel Evidence
Stream Gauge Graphs
Table 15. Verification of Bankfull Events
Table 16. Groundwater Hydrology Data
Soil Temperature Graph
Figure D1. 30-70 Percentile Graph for Rainfall
Groundwater Gauge Graphs

Table 14A. UT1 Upstream Channel Evidence – Major Hill Restoration Site

UT1 Upstream Channel Evidence	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	99	158	136	149	233
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	Yes	Yes	Yes	Yes
Other:					

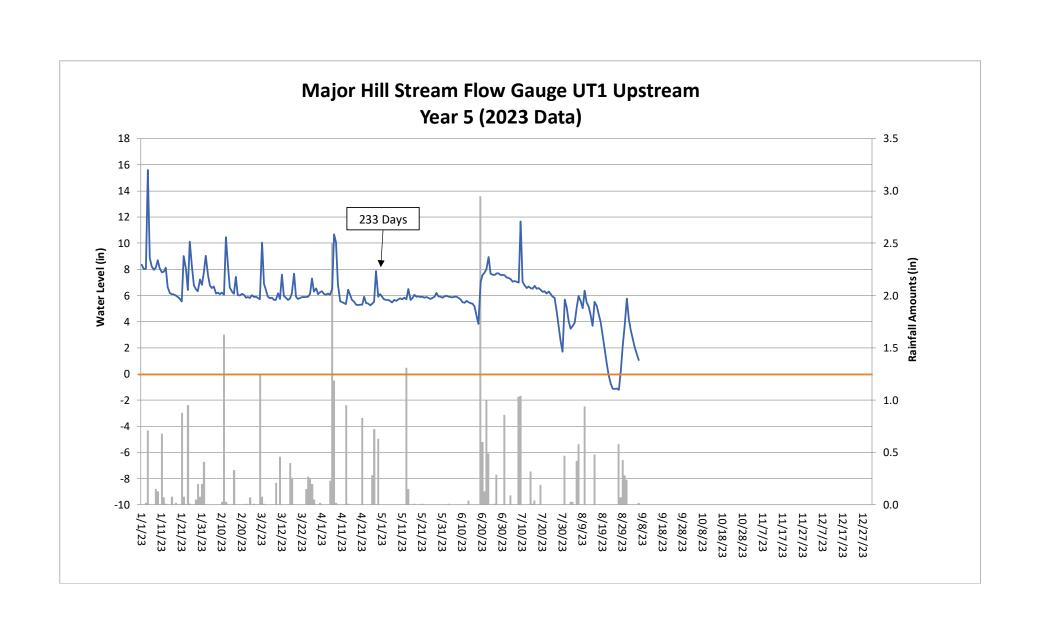
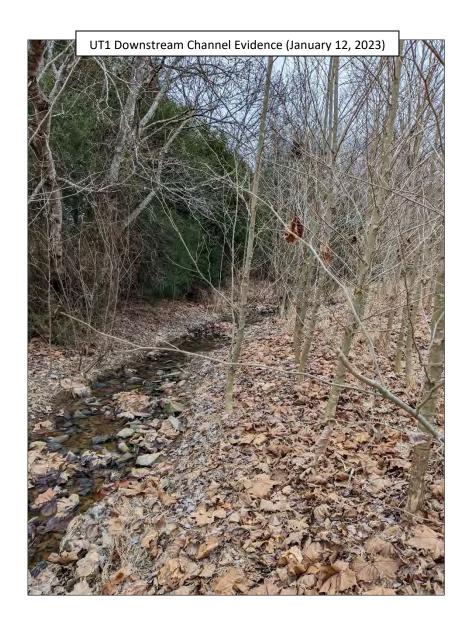
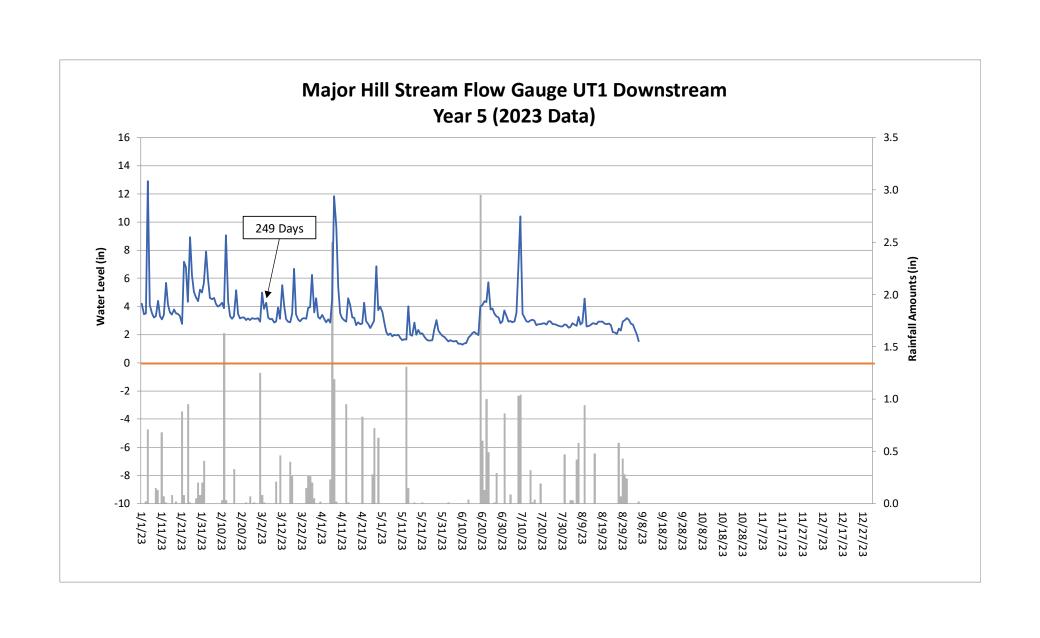




Table 14B. UT1 Downstream Channel Evidence – Major Hill Restoration Site

UT1 Downstream Channel Evidence	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)
Max consecutive days channel flow	52	236	285	216	249
Presence of litter and debris (wracking)	Yes	Yes	Yes	Yes	Yes
Leaf litter disturbed or washed away	Yes	Yes	Yes	Yes	Yes
Matted, bent, or absence of vegetation (herbaceous or otherwise)	Yes	Yes	Yes	Yes	Yes
Sediment deposition and/or scour indicating sediment transport	Yes	Yes	Yes	Yes	Yes
Water staining due to continual presence of water	Yes	Yes	Yes	Yes	Yes
Formation of channel bed and banks	Yes	Yes	Yes	Yes	Yes
Sediment sorting within the primary path of flow	Yes	Yes	Yes	Yes	Yes
Sediment shelving or a natural line impressed on the banks	Yes	Yes	Yes	Yes	Yes
Change in plant community (absence or destruction of terrestrial vegetation and/or transition to species adapted for flow or inundation for a long duration, including hydrophytes)	Yes	Yes	Yes	Yes	Yes
Development of channel pattern (meander bends and/or channel braiding) at natural topographic breaks, woody debris piles, or plant root systems	Yes	Yes	Yes	Yes	Yes
Exposure of woody plant roots within the primary path of flow	No	Yes	Yes	Yes	Yes
Other:		Bankfull event documented.			

Table 15. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
March 19, 2019	January 13, 2019	A trail camera captured the stream at bankfull after 1.10 inches of rain was documented on January 13, 2019 at an on-site rain gauge.	1
March 19, 2019	February 23, 2019	A trail camera captured the stream at bankfull after 2.74 inches of rain was documented between February 22-23, 2019 at an on-site rain gauge.	2
June 27, 2019	April 13, 2019	Stream gauge data indicates a bankfull event occurred after 4.11 inches of rain was documented between April 12-13, 2019 at an on-site rain gauge.	
September 9, 2019	July 24, 2019	A bankfull event likely occurred after 3.02 inches of rain was documented between July 23-24, 2019 at an on-site rain gauge.	-
September 9, 2019	August 1, 2019	A bankfull event likely occurred after 1.96 inches of rain was documented on August 1, 2019 at an on-site rain gauge.	
April 13, 2020	April 13, 2020	A bankfull event was documented via trail camera after approximately 2.31 inches of rain was recorded at an on-site rain gauge	3
January 31, 2021	January 31, 2021	A bankfull event was documented via trail camera after approximately 1.19 inches of rain was recorded at an on-site rain gauge	4
March 11, 2021	February 15, 2021	Wrack and laid-back vegetation were observed along the top of bank and floodplain of UT-1 indicating a bankfull event occurred after 2.93 inches of rain was documented between February 11 and 15, 2021.	5
March 16, 2022	March 16, 2022	A trail camera captured the stream at bankfull after 1.47 inches of rain was documented on March 16, 2022 at an on-site rain gauge.	6
August 2, 2022	July 27, 2022	Wrack piles were observed along the top of bank and floodplain of UT-1 indicating a bankfull event occurred after 1.73 inches of rain was documented on July 27, 2022.	7
February 12, 2023	February 12, 2023	A bankfull event was documented via trail camera after approximately 1.63 inches of rain was recorded at an on-site rain gauge.	8
April 7, 2023	April 7, 2023	A bankfull event was documented via trail camera after approximately 1.19 inches of rain was recorded at an on-site rain gauge.	9
June 19, 2023	June 19, 2023	A bankfull event was documented via trail camera after approximately 2.95 inches of rain was recorded at an on-site rain gauge.	10

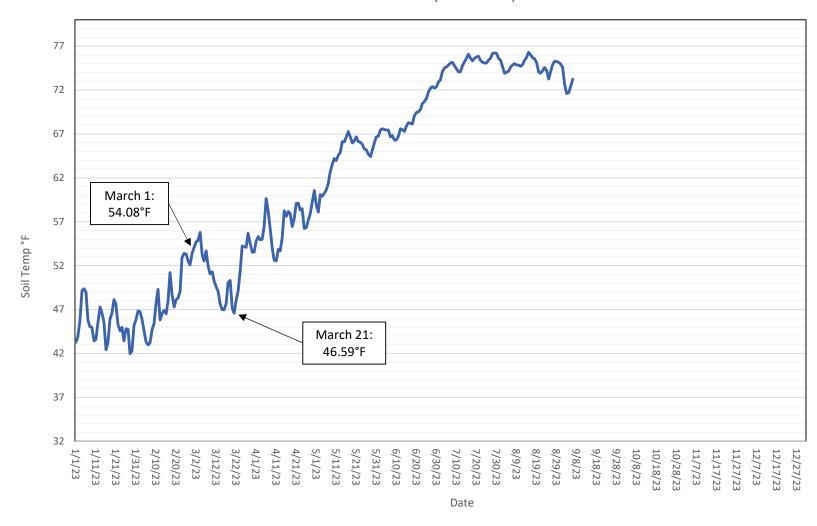
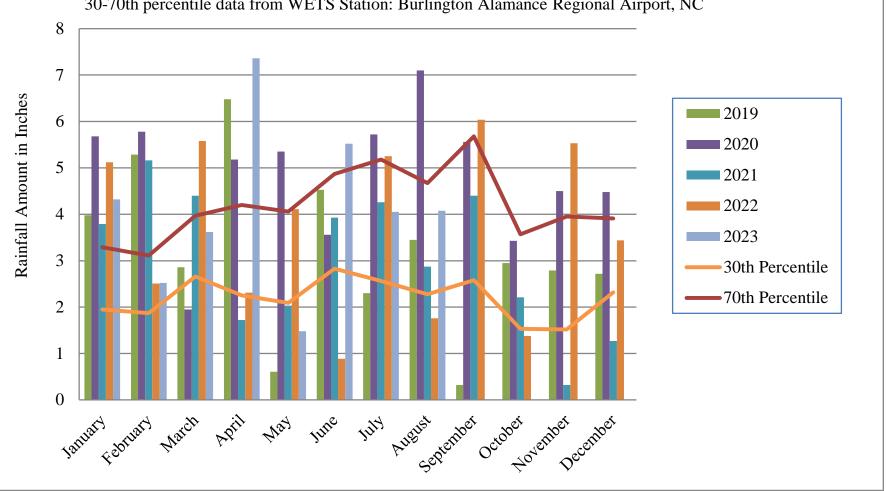
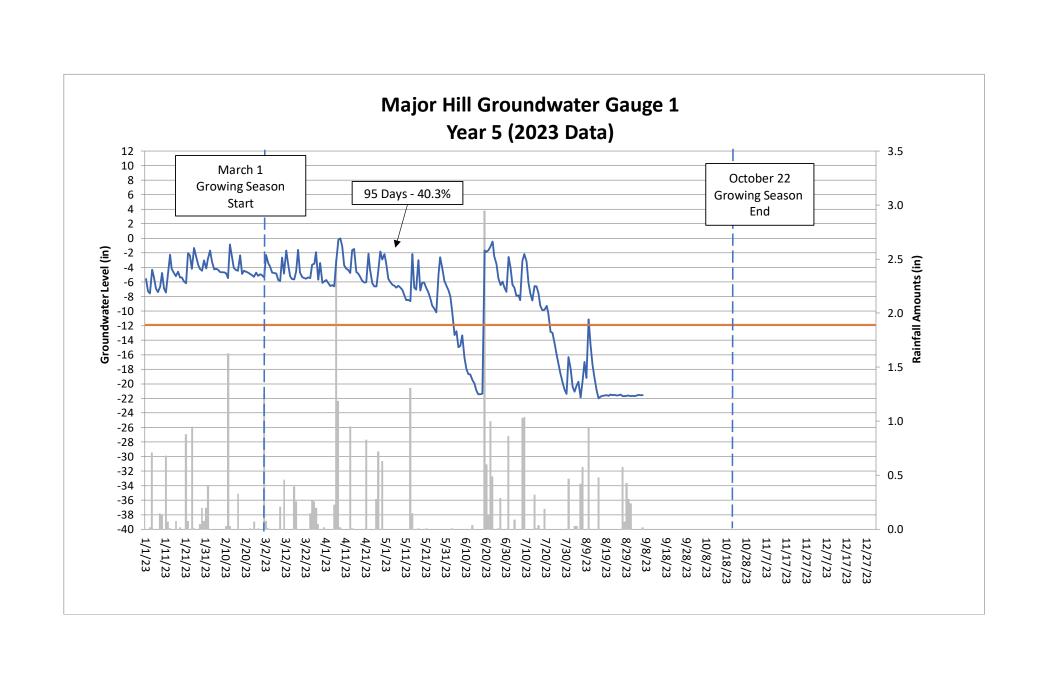
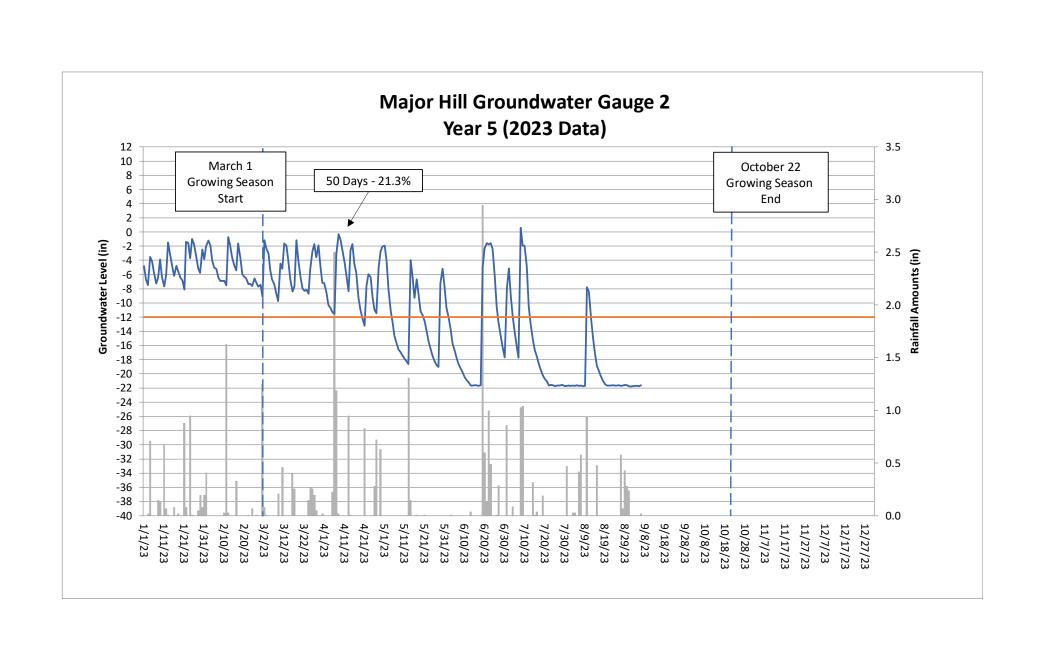


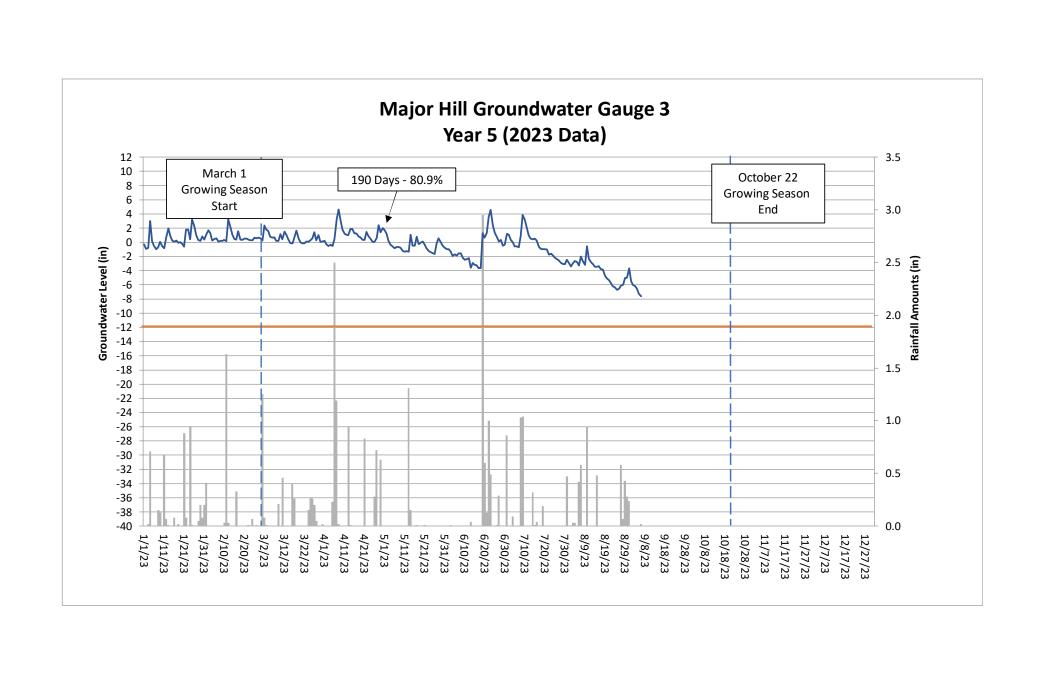
Table 16. Groundwater Hydrology Data - Major Hill Restoration Site

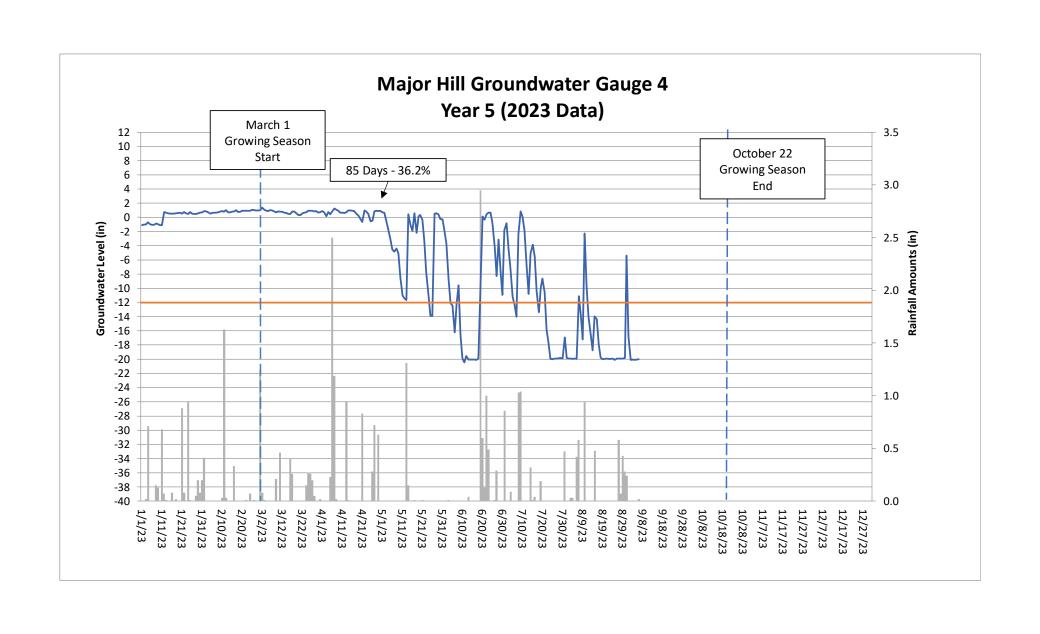
Gauge	Success	s Criteria Achiev	ed/Max Consecu	utive Days Durin	g Growing Seaso	on (Percenta	ge)
Gauge	Year 1 (2019)	Year 2 (2020)	Year 3 (2021)	Year 4 (2022)	Year 5 (2023)	Year 6 (2024)	Year 7 (2025)
1	No/14 days* 6.0 percent	Yes/136 days 57.9 percent	Yes/74 days 31.4 percent	Yes/93 days 39.4 percent	Yes/95 days 40.3 percent		
2	No/19 days* 8.1 percent	No/19 days 8.0 percent	No/21 days 8.9 percent	Yes/44 days 18.6 percent	Yes/50 days 21.3 percent		
3	Yes/25 days 10.6 percent	Yes/235 days 100 percent	Yes/226 days 95.8 percent	Yes/204 days 86.4 percent	Yes/190 days 80.9 percent		
4	Yes/34 days 14.5 percent	Yes/72 days 30.5 percent	Yes/60 days 25.4 percent	Yes/155 days 65.7 percent	Yes/85 days 36.2 percent		
5	Yes/119 days 50.6 percent	Yes/135 days 57.4 percent	Yes/53 days 22.5 percent	Yes/77 days 32.6 percent	Yes/51 days 21.7 percent		
6	Yes/77 days 32.8 percent	Yes/44 days 18.7 percent	Yes/80 days 33.9 percent	Yes/81 days 34.3 percent	Yes/100 days 42.6 percent		

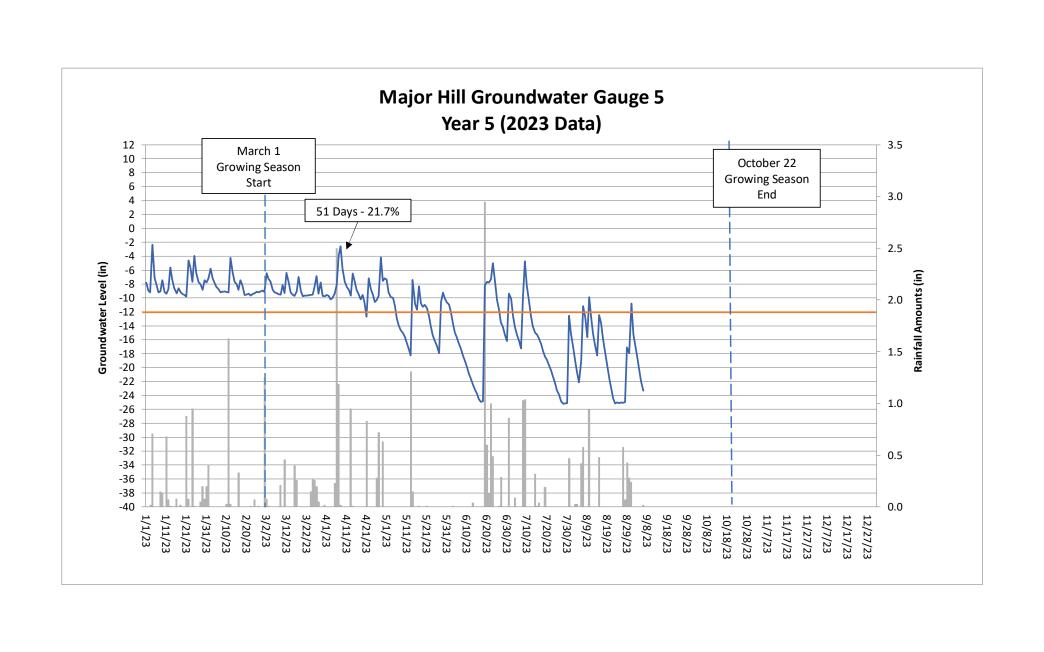

^{*} These gauges did not meet success criteria due to a data shuttle failure that resulted in the loss of data. Based on rainfall and hydrology data that was not lost, all gauges would have likely met success criteria had the loss of data not occurred.






Figure D1: Major Hill 30-70 Percentile Graph for Rainfall


Current year data from onsite rain gauge 30-70th percentile data from WETS Station: Burlington Alamance Regional Airport, NC





Appendix F. Benthic Data

Benthic Results Habitat Datasheets

PA ID NO			56918	56919
STATION			Major Hill	Major Hill
			UT1U	UT1D
DATE			6/13/2023	6/13/2023
SPECIES	T.V.	F.F.G.		
PLATYHELMINTHES			1	1
MOLLUSCA			<u>+</u>	
Bivalvia				
Veneroida				
Sphaeriidae		FC		
Musculium lacustre		FC		2
Pisidium sp.	6.6	FC		_
Gastropoda		-		
Basommatophora				
Physidae Physidae				
Physella sp.	8.7	CG	3	1
ANNELIDA				
Clitellata				
Oligochaeta		CG		
Lumbriculida				
Lumbriculidae		CG		
Lumbriculus sp.		CG		
Hirudinea		Р		
Arhynchobdellida				
Erpobdellidae		Р	2	
Rhynchobdellida				
Glossiphoniidae		Р		
Helobdella sp.		Р	1	
ARTHROPODA				
Cladocera				
Daphnidae				
Ceriodaphnia sp.				
Copepoda				
Cyclopoida				
Cyclopidae				
Mesocyclops edax				
Isopoda				
Asellidae		SH		
Caecidotea sp.	8.4	CG		4
Amphipoda		CG		
Crangonyctidae				
Crangonyx sp.	7.2	CG	1	6

PA ID NO			56918	56919
STATION			Major Hill	Major Hill
			UT1U	UT1D
DATE			6/13/2023	6/13/2023
SPECIES	T.V.	F.F.G.		
Insecta				
Ephemeroptera				
Baetidae		CG		
Odonata				
Aeshnidae		Р		
Aeshna umbrosa		Р		
Anax junius		Р		
Coenagrionidae		Р		
Corduliidae				
Somatochlora sp.	8.9	Р		
Libellulidae		Р		
Libellula vibrans	9.4	Р		
Pachydiplax longipennis	9.6			
Plecoptera				
Perlidae		Р		
Perlesta sp.	2.9	Р		1
Hemiptera				
Belostomatidae				
Belostoma sp.	9.5	Р		
Corixidae		PI	2	
Hesperocorixa sp.		PI		
Notonectidae				
Notonecta sp.		Р		
Megaloptera				
Corydalidae		Р		
Chauliodes rastricornis		Р		
Sialidae		Р		
Sialis sp.	7	Р	2	2
Trichoptera				
Hydropsychidae		FC		
Cheumatopsyche sp.	6.6	FC		
Limnephilidae				
Pycnopsyche sp.	2.5	SH		1

PA ID NO			56918	56919
STATION			Major Hill	Major Hill
			UT1U	UT1D
DATE			6/13/2023	6/13/2023
			-	
SPECIES	T.V.	F.F.G.		
Coleoptera				
Dytiscidae		Р		
Neoporus sp.	5			1
Thermonectus sp.		Р		
Hydrophilidae		Р		
Tropisternus sp.	9.3	Р		
Diptera				
Chaboridae				
Chaoborus albatus		Р		
Chironomidae				
Ablabesmyia mallochi	7.4	Р		
Chironomus sp.	9.3	CG	5	1
Conchapelopia sp.	8.4	Р		
Cryptochironomus sp.	6.4	Р		1
Microtendipes pedellus gp.	3.9	CG		1
Natarsia sp.	9.6	Р		
Paratendipes albimanus/duplicatus	5.6			2
Procladius sp.	8.8	Р		2
Psectrotanypus dyari	10	Р		
Tanytarsus sp.	6.6	FC	1	
Zavrelimyia sp.	8.6	Р	1	1
Culicidae		FC		
Anopheles sp.	8.6	FC	2	1
Culex sp.		FC		
Psychodidae		CG	1	
TOTAL NO. OF ORGANISMS			204038	204046
TOTAL NO. OF TAXA			16	20
EPT INDEX			0	2
BIOTIC INDEX Assigned Values			8.39	6.24

MH MYS BENTHICS MH COTIC

3/06 Revision 6

MH-17-009

Biological Assessment Unit, DWQ

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average

TOTAL SCORE

stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream MH-UTI Location/road: Grange (Road Name Courch) County Alamance
Date 4 13/23 CC#03030002 Basin Cape Fear Subbasin 03-06-04
Observer(s) PP LB Type of Study: Benthos Basinwide Special Study (Describe)
Latitude 36.873213 Longitude 79.358804 Ecoregion: MT F Slate Belt Triassic Basin
Water Quality: Temperature0C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 60 %Forest %Residential 40 %Active Pasture %Active Crops %Fallow Fields %Commercial %Industrial %Other - Describe:
Watershed land use: ☐Forest ☐Agriculture ☐Urban ☐ Animal operations upstream
Width: (meters) Stream Channel (at top of bank) Stream Depth: (m) Avg Max Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m)
Bank Angle: 40-00 or NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) Channelized Ditch Deeply incised-steep, straight banks Both banks undercut at bend Channel filled in with sediment Recent overbank deposits Bar development Buried structures Exposed bedrock Excessive periphyton growth Heavy filamentous algae growth Green tinge Sewage smell Manmade Stabilization: N Y: Rip-rap, cement, gabions Sediment/grade-control structure Berm/levee Flow conditions: High Normal Low Turbidity: Clear Slightly Turbid Turbid Tannic Milky Colored (from dyes) Good potential for Wetlands Restoration Project? YES NO Details - Official Flow Status Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed. D. Root mats out of water. E. Very little water in channel, mostly present as standing pools.
Remarks: Lattle nure been removed 1-on giparan and
Remarks: Raille nure beer removed d-on giparan ance some open pastare mostroum Lords of Salamanders + Speris -

I. Channel Modification Score A. channel natural, frequent bends..... B. channel natural, infrequent bends (channelization could be old)..... C. some channelization present. D. more extensive channelization, >40% of stream disrupted..... E. no bends, completely channelized or rip rapped or gabioned, etc..... ☐ Evidence of dredging ☐ Evidence of desnagging=no large woody debris in stream ☐ Banks of uniform shape/height Remarks II. Instream Habitat: Consider the percentage of the reach that is favorable for benthos colonization or fish cover. If >70% of the reach is rocks, 1 type is present, circle the score of 17. Definition: leafpacks consist of older leaves that are packed together and have begun to decay (not piles of leaves in pool areas). Mark as Rare, Common, or Abundant. Rocks Macrophytes — Sticks and leafpacks Snags and logs Undercut banks or root mats AMOUNT OF REACH FAVORABLE FOR COLONIZATION OR COVER >70% 40-70% 20-40% <20% **Score** Score Score Score 4 or 5 types present..... 20 16 12 8 7 3 types present..... 19 15 11 2 types present..... 18 10 6 5 1 type present..... 17 9 No types present..... ☐ No woody vegetation in riparian zone Remarks Subtotal III. Bottom Substrate (silt, sand, detritus, gravel, cobble, boulder) Look at entire reach for substrate scoring, but only look at riffle for embeddedness, and use rocks from all parts of riffle-look for "mud line" or difficulty extracting rocks. A. substrate with good mix of gravel, cobble and boulders **Score** 1. embeddedness <20% (very little sand, usually only behind large boulders)..... 15 2. embeddedness 20-40%.... 12 3. embeddedness 40-80%.... 8 4. embeddedness >80%..... 3 B. substrate gravel and cobble 1. embeddedness <20%.... 2. embeddedness 20-40%.... 3. embeddedness 40-80% 4. embeddedness >80%..... C. substrate mostly gravel 1. embeddedness <50%.... 2. embeddedness >50%.... D. substrate homogeneous 1. substrate nearly all bedrock..... 3 2. substrate nearly all sand 3 2 3. substrate nearly all detritus..... 4. substrate nearly all silt/ clay.... Remarks IV. Pool Variety Pools are areas of deeper than average maximum depths with little or no surface turbulence. Water velocities associated with pools are always slow. Pools may take the form of "pocket water", small pools behind boulders or obstructions, in large high gradient streams, or side eddies. A.

A.	Pools present	Score
	1. Pools Frequent (>30% of 200m area surveyed)	
	a. variety of pool sizes	10
	b. pools about the same size (indicates pools filling in)	
	2. Pools Infrequent (<30% of the 200m area surveyed)	•
	a. variety of pool sizes	6
	b. pools about the same size	4
B.	Pools absent	
		Subtotal

Pool bottom boulder-cobble=hard Bottom sandy-sink as you walk Silt bottom Some pools over wader depth Remarks

_		
INT	١	D
~		ν

V. Riffle Habitats	4 D:011	for form and
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Freque Sco		infrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream	12	
B. riffle as wide as stream but riffle length is not 2X stream width	7	
C. riffle not as wide as stream and riffle length is not 2X stream width	3	
D. riffles absent	01	ototal 16
Channel Slope: □Typical for area □Steep=fast flow □Low=like a coastal stream	Suc	ototal 16
VI. Bank Stability and Vegetation		
FACE UPSTREAM	Left Bank	Rt. Bank
A. D. J. 411	<u>Score</u>	Score
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion or bank failure).	ion (D	(7)
B. Erosion areas present	юнС	0
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flo		2
5. little or no bank vegetation, mass erosion and bank failure evident		0 14
Remarks		Cotal
TOTAL		
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's sur		y would block out
sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the	nis metric.	_
		Score
A. Stream with good canopy with some breaks for light penetration		(10)
B. Stream with full canopy - breaks for light penetration absent		8 7 2
D. Stream with minimal canopy - full sun in all but a few areas		2
D. Divain with infilma canopy - full bull in all but a low alcas		
E. No canony and no shading		0
E. No canopy and no shading.		
E. No canopy and no shading	*********	
Remarks	*********	0 /(r)
Remarks		0 Subtotal 10
Remarks	d floodplain)	0 Subtotal //
Remarks VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon	d floodplain)	0 Subtotal //
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Gweeds/old field Exotics (kudzu, etc)	d floodplain) enter the strea	0 Subtotal // . Definition: A break am, such as paths
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks)	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐ Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐ Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the strea	O Subtotal // . Definition: A break am, such as paths Rt. Bank
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters.	d floodplain) enter the streat Lft. Bank Score 3 2	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2 1	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: □ Trees □ Shrubs □ Grasses □ Weeds/old field □ Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2 1	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters	d floodplain) enter the streat Lft. Bank Score 4 3 2 1 3 2 1 0	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2 1 3 2 1
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. d. width < 6 meters. c. width 6-12 meters. d. width < 6 meters. d. width < 6 meters.	d floodplain) enter the streat Lft. Bank Score 4 3 2 1 3 2 1 0	Subtotal O Subtotal O Subtotal O A break am, such as paths Rt. Bank Score 4 3 2 1 3 2 1 Total 10
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyon in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly down to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. b. width > 18 meters. c. width 6-12 meters. d. width < 6 meters. 2. breaks common a. width > 18 meters. b. width > 18 meters. c. width > 18 meters. d. width < 6 meters. c. width 6-12 meters. d. width < 6 meters. c. width 6-12 meters. d. width < 6 meters. Remarks	d floodplain) enter the streat Lft. Bank Score 4 3 2 1 3 2 1 0	Subtotal O Subtotal O Subtotal O Definition: A break am, such as paths Rt. Bank Score 4 3 2 1 3 2 1 Total 10 otal 50

3/06 Revision 6

MH_17-009 Biological Assessment Unit, DWQ

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

TOTAL SCORE

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent averag stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream MH-UT/4 Location/road: Graham (Road Name Chych) County Alamance
Date 4 13 23 CC# 0303000 2 Basin Cype feq Subbasin 03-06-04
Observer(s) F DM Type of Study: □ Fish □Benthos □ Basinwide □ Special Study (Describe)
Latitude 35.674390 Longitude 79.359219 Ecoregion: MT P Slate Belt Triassic Basin
Water Quality: Temperature ⁰ C DO mg/l Conductivity (corr.) μS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 30 %Forest %Residential 70 %Active Pasture % Active Crops %Fallow Fields % Commercial %Industrial %Other - Describe:
Watershed land use: □Forest □Agriculture □Urban □ Animal operations upstream
Width: (meters) Stream \ Channel (at top of bank) \ \ \textstyle{0.6} \ \ \text{Stream Depth: (m)} \ \ \text{Avg 0.1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Bank Angle: 20 ° or NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch
□ Deeply incised-steep, straight banks □ Both banks undercut at bend □ Channel filled in with sediment □ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell Manmade Stabilization: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Channel Flow Status Useful especially under abnormal or low flow conditions.
A. Water reaches base of both lower banks, minimal channel substrate exposed B. Water fills >75% of available channel, or <25% of channel substrate is exposed C. Water fills 25-75% of available channel, many logs/snags exposed D. Root mats out of water E. Very little water in channel, mostly present as standing pools
Weather Conditions: Only 19 Photos: ON Y Digital O35mm
Domorlos

I. Channel Modification				Score
A. channel natural, frequent bends				
B. channel natural, infrequent bends (channel	lization could	d be old)		4
C. some channelization present				
D. more extensive channelization, >40% of s				
E. no bends, completely channelized or rip ra				
☐ Evidence of dredging ☐ Evidence of desnagging=no lar	rge woody de	ebris in stream	Banks of unifor	rm shape/height
Remarks		/		Subtotal 5
II. Instream Habitat: Consider the percentage of the reac reach is rocks, 1 type is present, circle the score of 17. Def	inition: leaf	packs consist of	older leaves that	r fish cover. If >70% of the are packed together and have
begun to decay (not piles of leaves in pool areas). Mark as				
Rocks C Macrophytes C Sticks and leafpace	ks <u>F</u> Sna	gs and logs	_Undercut bank	ks or root mats
AMOUNT OF REACH FAVO	RABLE FO >70%	OR COLONIZA' 40-70%	TION OR COV 20-40%	ER <20%
	Score	Score	Score	Score
4 or 5 types present	20	16	12	8
3 types present	19	15	11	7
2 types present		14	10	6
1 type present		13	9	5
NI - towns marrant	^		(10	19
□ No woody vegetation in riparian zone Remarks	16961	lacks, rou	Ks (riftles)	Subtotal_/
III. Bottom Substrate (silt, sand, detritus, gravel, cobble for embeddedness, and use rocks from all parts of riffle-lo A. substrate with good mix of gravel, cobble a 1. embeddedness <20% (very little sand 2. embeddedness 20-40%	ok for "mud and boulders , usually only	line" or difficulty s y behind large bo	y extracting rocks	Score 12 8 12 8 14 11 6 2 8 4 Subtotal 15
IV. Pool Variety Pools are areas of deeper than averag associated with pools are always slow. Pools may take the large high gradient streams, or side eddies. A. Pools present 1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes	e form of "po) pools filling i reyed)	n)	ll pools behind b	Subtotal 0
Remarks				11 (1)

Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequent Scor A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream B. riffle as wide as stream but riffle length is not 2X stream width	<u>Score</u> 12 7 3	nfrequent	
VI. Bank Stability and Vegetation			
	Left Bank	Rt. Bank	
	<u>Score</u>	<u>Score</u>	
 A. Banks stable little evidence of erosion or bank failure(except outside of bends), little potential for erosion. B. Erosion areas present diverse trees, shrubs, grass; plants healthy with good root systems	•	6	
2. few trees or small trees and shrubs; vegetation appears generally healthy		5	
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		3	
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow		2	
5. little or no bank vegetation, mass erosion and bank failure evident		0 44	
		otal_/7	
Remarks			
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surfight when the sun is directly overhead. Note shading from mountains, but not use to score the A. Stream with good canopy with some breaks for light penetration. B. Stream with full canopy - breaks for light penetration absent. C. Stream with partial canopy - sunlight and shading are essentially equal. D. Stream with minimal canopy - full sun in all but a few areas. E. No canopy and no shading.	s metric.	would block of Score 10 8 7 2	ut
		LD	
Remarks		Subtotal 10	
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly edown to stream, storm drains, uprooted trees, otter slides, etc.			
FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc)	Score	Score	
A. Riparian zone intact (no breaks)	Beoic	DCOIC	
	_	0	
•	B)	(G)	
1. width > 18 meters	<i>(</i> 2)	4	
•	(2) 4 3	4 3	
1. width > 18 meters	4 3 2	4 3 2	
1. width > 18 meters	4 3	4 3 2	
1. width > 18 meters	4 3 2	4 3 2	
1. width > 18 meters	4 3 2	3	
1. width > 18 meters	4 3 2 4 3 2	-	
1. width > 18 meters	4 3 2	3	
1. width > 18 meters	4 3 2 4 3 2 1	3	
1. width > 18 meters	4 3 2 4 3 2 1	3	
1. width > 18 meters	4 3 2 4 3 2 1	3	
1. width > 18 meters	4 3 2 4 3 2 1	3	
1. width > 18 meters	4 3 2 4 3 2 1 3 2 1 0	3	

Appendix G. Riparian Buffer Year 5 (2023) Monitoring Report

RIPARIAN BUFFER MY5 (2023) MONITORING REPORT

MAJOR HILL MITIGATION SITE

Alamance County, North Carolina

DMS Project ID No. 100015 Full Delivery Contract No. 7193 USACE Action ID No. SAW-2017-01472 DWR No. 17-0921 RFP No. 16-006990

Cape Fear River Basin – Haw River Arm Cataloging Unit 03030002

Prepared for:

NORTH CAROLINA DEPARTMENT OF ENVIRONMENTAL QUALITY
DIVISION OF MITIGATION SERVICES
1652 MAIL SERVICE CENTER
RALEIGH, NORTH CAROLINA 27699-1652

February 2024

This project with conforms with the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 and the Jordan Lake Buffer Protection Rule (15A NCAC 02B .0267 & 15A NCAC 02B .0268)

Table of Contents

1.0	MIT	IGATION	N PROJECT SUMMARY	1
2.0	REG	ULATOR	RY CONSIDERATIONS	2
3.0	RIPA	ARIAN RI	ESTORATION, ENHANCEMENT, & PRESERVATION PLAN	2
	3.1		an Area Restoration Activities	
		3.1.1	Site Preparation	2
		3.1.2	Planting	4
	3.2	Riparia	an Buffer Enhancement via Cattle Exclusion Activities	4
	3.3	Riparia	an Buffer Preservation Activities	5
	3.4	-	Treatment Area	
4.0	ANN	IUAL MO	ONITORING	5
	4.1		oring	
	4.2	Perfor	mance Standards	6
	4.3	Result	s and Discussion	6
	4.4	Mainte	enance and Management	7
5.0	REF	ERENCES	5	10
			Tables	
Table	1. Bu	ffer Proj	ect Attributes	1
Table	2. Bu	ffer Proj	ect Areas and Assets	3
Table	3. Pla	nted Ba	re Root Woody Vegetation	4
Table	4. Rip	arian Bu	uffer Monitoring	5
Table	5. Rip	arian Bu	uffer Vegetation Totals	7
Table	6. Tot	tal Stem	s by Plot and Species	8
Table	7. Ter	mporary	Vegetation Plot Data	9

Attachments

Attachment 1

Figure A. Riparian Buffer Asset Map Figure B. Riparian Buffer Planting Map Year 5 (2023) Planted Stem Height Data

1.0 MITIGATION PROJECT SUMMARY

The Major Hill Stream and Wetland Mitigation Site (hereafter referred to as the "Site") encompasses 16.7 acres along warm water, unnamed tributaries to Pine Hill Branch. The Site is located approximately 3.5 miles southeast of Snow Camp and 6 miles north of Silk Hope in southern Alamance County near the Chatham County line. Project attributes are included in the following table.

Table 1. Buffer Project Attributes

Project Name	Major Hill							
Hydrologic Unit Code	3030002050050							
River Basin	Cape Fear							
Geographic Location (Lat, Long)	35.873206, -79.360906							
Site Protection Instrument (DB, PG)	(2789, 896), (2514, 756), (3143, 270), (3150, 920)							
Total Credits (BMU)	402,837							
Types of Credits	Riparian Buffer Restoration, Enhancement, & Preservation							
Mitigation Plan Date	Apr-18							
Initial Planting Date	Dec 2018-Jan 2019							
Baseline Report Date	Mar-19							
MY1 Report Date	Nov-19							
MY2 Report Date	Jan-21							
MY3 Report Date	Jan-22							
MY4 Report Date	Nov-22							
MY5 Report Date	Feb-24							

The Site drainage area is primarily composed of pasture, forest, agricultural land, and sparse residential property. Impervious surfaces account for less than five percent of the upstream land surface.

Before construction, Site land use consisted of pasture, hayfields, disturbed forest, and agricultural land used for livestock grazing and hay production. Livestock had unrestricted access to Site streams, and stream banks were eroded vertically and laterally and received extensive sediment and nutrient inputs. Riparian zones in the upper reaches of UT 1 were primarily composed of herbaceous vegetation that was sparse and disturbed due to livestock grazing, bush hogging, and regular land-management activities. The downstream reaches of UT 1 and all of UT 3 were primarily wooded with livestock disturbance to stream channels. UT 2 was the lone tributary not subject to continuous, unrestricted livestock access. Riparian areas immediately adjacent to UT 2 were forested with a fence to protect this area from livestock access.

The riparian areas were restored in concurrence with the Major Hill Stream and Wetland Mitigation Site (NC DMS Project ID 10015, SAW-2017-01472) and involved restoring riparian buffers adjacent to restored streams to help reduce non-point source contaminant discharges to downstream waters in the Haw River sub-watershed of Jordan Lake. All riparian areas were assessed by DWR (Katie Merritt and Sue Homewood) during a site visit on February 20, 2018, to determine the Site's viability for buffer mitigation.

The Site is protected with a permanent conservation easement. Riparian restoration, enhancement, and preservation area widths adjacent to restored streams extend out to a maximum of 200 feet from the top

of stream banks with a minimum width of 50 from the top of banks. Riparian buffer enhancement and preservation credits generated on this Site are allowed pursuant to 15A NCAC 02B .0295 (o). No riparian restoration areas less than 20 feet wide, measured perpendicularly from the top of banks, are used to generate riparian buffer credit.

Riparian Buffer Mitigation Credit was not generated in areas generating wetland mitigation credit.

2.0 REGULATORY CONSIDERATIONS

Credit determination for this Site follows the North Carolina consolidated buffer mitigation rule 15A NCAC 02B .0295, effective November 1, 2015 (see Table 2 on the following page and Figure A, Attachment 1).

3.0 RIPARIAN RESTORATION, ENHANCEMENT, & PRESERVATION PLAN

This Site was also proposed as a stream and wetland mitigation project; therefore, the restoration of riparian areas was accomplished through the goals and methods outlined by the *Major Hill Stream and Wetland Mitigation Plan*. All applicable federal, state and local permits or authorizations were acquired to implement the mitigation plan.

Primary goals focused on 1) improving water quality, 2) enhancing flood attenuation and hydrology, 3) improving aquatic resources, and 4) restoring riparian habitat. Completed mitigation provides floodplain connectivity, floodplain resistance, stream stability, sediment transport, surface and subsurface storage/retention, in-stream habitat, riparian habitat and structure, thermal regulation, floodplain biogeochemical processing, and pollutant filtration/removal of pollutant sources. The riparian area will be restored through the revegetation of native plant communities.

3.1 Riparian Area Restoration Activities

3.1.1 Site Preparation

Soil grading occurred during stream restoration activities. Topsoils were stockpiled during construction activities and spread on the soil surface once critical subgrade was established. The replaced topsoil will serve as a viable growing medium for community restoration to provide nutrients and aid in the survival of planted species.

Farm Pond Removal

To complete the stream and wetland restoration activities and subsequent riparian buffer restoration, the removal of a small farm pond, ~0.58 acres, occurred. Stream, wetland, and riparian area restoration within the abandoned pond included 1) notching the dam to dewater; 2) removal of the dam to the elevation of the adjacent floodplain; 3) excavating sediment that is unsuitable for channel bank construction; 4) backfilling areas of sediment removed with soil suitable for channel construction (as necessary); 5) excavation of the design channel, 6) stabilization of the channel with coir matting, seed, and mulch; and 7) installation of structures.

Table 2. Buffer Project Areas and Assets

RIPARIAN BUFFER (15A NCAC 02B.0295)

If Converted to Nutrient
Offset

											01.15	
Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)	Convertible to Nutrient Offset (Yes or No)	Nutrient Offset: N (lbs)	Nutrient Offset: P (lbs)
Rural	Subject & Nonsubject	Restoration	1	0-100	213,290	1	100%	1.00000	213,290.000	Yes	11129.775	716.842
Rural	Subject & Nonsubject	Restoration	2	101-200	40,976	1	33%	3.03030	13,522.094	Yes	2138.186	137.715
Rural	Subject	Enhancement	3	0-100	341,433	2	2 100% 2.00000		170,716.500	No	0.000	0.000
				SUBTOTALS	595,699				397,528.594		13,267.960	854.558

ELIGIBLE PRESERVATION	100 566
AREA	198,566

Location	Jurisdictional Streams	Restoration Type	Reach ID/ Component	Buffer Width (ft)	Creditable Area (sf)*	Initial Credit Ratio (x:1)	% Full Credit	Final Credit Ratio (x:1)	Riparian Buffer Credits (BMU)
Rural	Nonsubject	Preservation	4	0-100	25,614	5	100%	5.00000	5,122.800
Rural	Nonsubject	Preservation	5	101-200	2,814	5	33%	15.15152	185.724
				SUBTOTALS	28,428				5,308.524
				TOTALS	624,127				402,837.117

^{*}Area eligible for preservation may be no more than 25% of total area, where total area is back-calculated with the equation R+E/0.75.

^{*}Buffers must be at minimum 20' wide for riparian buffer credit, buffers must be 50' wide for nutrient offset credit

^{*}When preservation areas exceed the total eligible preservation area, select the areas with the best credit ratios as the creditable areas.

3.1.2 Planting

Bare-root seedlings within the Piedmont Alluvial and Dry-Mesic Oak-Hickory Forests were initially planted at a density of approximately 680 stems per acre on 8-foot centers. Species in the streamside assemblage and Marsh Wetland Treatment Areas were planted at a density of approximately 2720 stems per acre on 4-foot centers. The following table summarizes planted bare-root stems within the Site.

Table 3. Planted Bare Root Woody Vegetation

Species	Piedmont/Low Mountain Alluvial Forest	Dry-Mesic Oak/Hickory Forest	Marsh Treatment Wetland	Streamside Assemblage	Total
Acres	1.1	5.5	0.01	1.5	8.11
Alnus serrulata			5	20	25
Asimina triloba				200	200
Betula nigra	100			200	300
Carpinus caroliniana		600			600
Cephalanthus occidentalis			5	20	25
Cercis canadensis		500			500
Cornus amomum	95		5	800	900
Diospyros virginiana		450			450
Fraxinus americana		100			100
Fraxinus pennsylvanica	150			750	900
Liriodendron tulipifera	75				75
Nyssa sylvatia		600			600
Platanus occidentalis	120			780	900
Quercus nigra	110	790		500	1,400
Quercus phellos	100	700		400	1,200
Salix nigra*				400*	400
Sambucus canadensis			11	14	25
TOTALS	750	3,740	26	4,084	8,600
Stems/Acre	682	680	2600	2722	1060

^{*}Live stakes of Salix nigra were planted; all other planted species were planted as bare root plants.

3.2 Riparian Buffer Enhancement via Cattle Exclusion Activities

Riparian buffer enhancement included permanently protecting the existing riparian buffer from livestock via exclusionary fencing, cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. These areas are defined primarily as disturbed mixed hardwoods. Buffer credits sought in the enhancement area are allowed under 15A NCAC 02B .0295 (o)(6). The enhancement area extends a maximum of 200 feet from the top of the bank with a minimum width of 20 from the top of stream banks.

A small portion of UT-3 generates riparian buffer enhancement credit from only one side of the stream. Before construction, cattle had access to the entire area; however, the only access point was from the pasture on the northern side of the stream, the parcel owned by Mr. Lamm. Once fencing was installed to prevent cattle access from Mr. Lamm's parcel to the stream, cattle were no longer able to access the south side of the stream. This action will result in compliance with 15A NCAC 02B .0295 (o)(6), which states that the permanent exclusion of grazing livestock must be done such that the livestock are fenced out of the stream and its adjacent buffer. The southern parcel, which is not a part of the conservation easement, is owned by the Caviness family and is a single-family home.

3.3 Riparian Buffer Preservation Activities

Riparian buffer preservation includes permanently protecting existing riparian buffers from cutting, clearing, filling, grading, and any similar activities that would affect the functionality of the riparian buffer. Areas specified for Preservation at the Site, in accordance with 15A NCAC 02B .0295, are defined primarily as mixed hardwoods, with a number of high-value species and over 200 species total per acre. They are areas where livestock was fenced out before construction – these areas had little or no historical livestock access.

3.4 Marsh Treatment Area

A marsh treatment area was constructed to intercept surface waters draining through agricultural areas before discharging into UT1. The marsh treatment area is excluded from credit calculations.

4.0 ANNUAL MONITORING

4.1 Monitoring

Eight vegetation monitoring plots (10-meter by 10-meter) were installed within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008); this covers 3.4% of the area generating riparian buffer restoration credit. Vegetation monitoring will occur annually in the fall (between September and November), prior to the loss of leaves for a period of five monitoring years following planting. Parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. In addition, inspections for beaver and other potential nuisance species will occur throughout the monitoring period.

The following table outlines riparian buffer monitoring for this project; monitoring parameter descriptions follow.

Table 4. Riparian Buffer Monitoring

Required	Parameter	Quantity	Frequency	Notes
Yes	Vegetation	Eight (8) plots located across all restored buffer zones.	Annual	Vegetation will be monitored for five years or until performance standards are met. Visual monitoring of the site will be done all five years. Analysis of vegetation will be recorded using level 2 CVS Monitoring protocol.
Yes	Project Boundary	NA	Annual	Locations of fence damage, vegetation damage, boundary encroachments, etc. will be mapped.

4.2 Performance Standards

Performance standards were established to verify that the vegetation component supports community elements necessary for forest development and the maintenance of diffuse flow through the riparian buffer in accordance with North Carolina Division of Water Resources Administrative Code 15A NCAC 02B.0295 (Mitigation Program Requirements for Protection and Maintenance of Riparian Buffers). Performance standards are dependent upon the density and growth of at least four native hardwood tree species where no one species is greater than 50% of the stems. After five years of monitoring, an average density of 260 woody stems per acre, including planted shrubs (silky dogwood and blueberry), must be surviving, and diffuse flow maintained. 15A NCAC 02b .0295 (2)(E) dictates that monitoring for planted stems would also include the health of planted stems. Level 2 CVS monitoring protocol requires the vigor, a determinant of health, of a monitored stem be recorded. If requested, RS will make available during the monitoring years, planted stem health, e.g. vigor.

4.3 Results and Discussion

In early January 2020, a winter-time visual assessment of the Site was performed, and it was determined that although Year 1 (2019) vegetation data, including random transects, showed a high density of trees, a light supplemental planting would help ensure the long-term success in several areas. On January 31, 2020, three areas that visually exhibited low stem density and/or poor vigor were supplementally planted. During the supplemental planting effort, approximately 370 stems were planted across 1.20 acres (approximately 300 stems per acre). As the planting was designated for visual purposes and was not an effort to increase stem density data, no stems were planted within permanent vegetation plots. The following table lists species included in the supplemental planting list. Preparation included the application of 100 lbs of lime, 50 lbs of fertilizer, and 3 lbs of seed to stabilize bare areas (see Figure A for planting areas).

2020 Supplemental Planting Species List

Species	Number of Stems
Tag Alder (<i>Alnus serrulata</i>)	20
Chinkapin (Castanea pumila)	20
Hackberry (Celtis occidentalis)	50
Hawthorn (<i>Crataegus marshallii</i>)	20
Crab Apple (<i>Malus angustifolia</i>)	50
Red Mulberry (<i>Morus rubra</i>)	100
Sycamore (<i>Platanus occidentalis</i>)	50
Shumard Oak (Quercus shumardii)	50
Total	370

Based on the number of stems counted, average densities were measured at 354 hardwood tree stems per acre (excluding livestakes, shrubs, pines, and vines) in year 5 (2023). In addition, all but two permanent plots met success criteria based on planted stems alone. Plot 1 meets success criteria when including naturally recruited stems of green ash (*Fraxinus pennsylvanica*). Additionally, two temporary vegetation transects also met success criteria. The following Table 5 summarizes riparian buffer success criteria and Table 6 summarizes all permanent vegetation plot data by species, plot, and year. Table 7 summarizes all

temporary vegetation plot data by species and transect. Vegetation plot photographs are included in Appendix B of the Major Hill Stream and Wetland Mitigation Site Year 5 (2023) Annual Monitoring Report.

Table 5. Riparian Buffer Vegetation Totals

Plot #	Success Criteria Met?	MY 5 (2023) Planted Stems/Ac	MY 5 (2023) All Stems/Ac					
1	No	202	769					
2	Yes	Yes 283						
3	Yes	405	405					
4	No	162						
5	Yes	283	283					
6	Yes	486	486					
7	Yes	445	445					
8	Yes	567	607					
T-1	Yes		648					
T-2	Yes		445					
Average Planted Stems/Acre	Yes	354	457					

4.4 2023 Maintenance and Management

Restoration Systems continues to monitor fescue throughout the Site. Based on permanent and random vegetation monitoring plots and visual observations, planted stems are establishing within areas where fescue was a concern.

On September 27, 2023, RS Staff members discovered an encroachment area measuring .04 acres on the site's south side shown on Figure 2 (Appendix B). An existing cattle fence was not relocated to boundary corners during construction. On December 02, 2023, the fence was relocated to outside of the easement. On December 05, 2023, a supplemental planting of twenty 3-gallon pots of mitigation plan approved species including of 5 Black gum (*Nyssa Sylvatica*), 5 Water Oak (*Quercus nigra*), and 10 Willow Oak (*Quercus phellos*) were planted within the encroached area, see Easement Inspection MY5 (2023) Photo Log.

Table 6. Total Stems by Plot and Species DMS Project Code 17.009. Project Name: Major Hill

			Current Plot Data (MY5 2023) Annual Means																																			
			17.009-01-0001	17.0	09-01-0	002	17.0	09-01-0003	17.0	009-01-0004	17.	009-01	-0005	17.0	009-01-0	0006	17.0	09-01-0	0007	17.0	009-01-0	800	MY5	2023)		MY4 (20	IY4 (2022)		MY3 (20	J <mark>21</mark>)	MY2	(2020)	MY1 (2019)			MY0 (2019	9)	
Scientific Name	Common Name	Species Type	PnoLS P-all T	PnoLS	P-all	Т	PnoLS	P-all T	PnoLS	P-all T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS P-a	II T	PnoL	S P-all	T	PnoLS	S P-all	Т	PnoLS P-a	all T	Pno	oLS P-a	all T	Pno	LS P-all	г
Acer rubrum	red maple	Tree																									2									3		
Asimina triloba	pawpaw	Tree															1	1	1				1	1	1	2 2	2		2	2 7	2 2	2	2	3	3	3	7 7	7
Betula nigra	river birch	Tree							1	1 1	L						1	1	1	1	1	1	3	3	3	3 3	3		3	3	3 4	4	4	6	6	6	9 9	ç
Carpinus caroliniana	American hornbeam	Tree	1 1 :	. 3	3	3	4	4 4	1					2	2	2				1	1	1	11	11	11 1	1 11	. 11	. 1	1 1	1 11	1 10	10	10	14	14	14	5 5	5
Cercis canadensis	eastern redbud	Tree					2	2 2	2											2	2	2	4	4	4	3 3	3		4	4 /	4 5	5	5	8	8	8	14 14	14
Cornus amomum	silky dogwood	Shrub																												1				2	2	2	1 1	1
Diospyros virginiana	common persimmon	Tree		1	1	2	1	1 1	1 1	1 1	1 1	L :	1 1	. 1	. 1	1				4	4	4	9	9	10	8 8	8	3	8	8 10) 9	9	10	9	9	9	5 5	5
Fraxinus	ash	Tree																		1	1	1	1	1	1	1 1	. 1		1	1 1	1 1	1	1	1	1	1	1 1	1
Fraxinus americana	white ash	Tree												3	3	3				1	1	1	4	4	4	5 5	5 5		5	5 .	5 5	5	5	5	5	5	5 5	5
Fraxinus pennsylvanica	green ash	Tree	2 2 10	5					1	1 1	1 1	L :	1 1				1	1	1				5	5	19	5 5	12		5	5 1	8 5	5	8	4	4	4	3 3	3
Liquidambar styraciflua	sweetgum	Tree																												1						2		
Liriodendron tulipifera	tuliptree	Tree	1 1 :																				1	1	1	1 1	. 1		1	1 :	1 1	1	1	1	1	1	5 5	5
Nyssa sylvatica	blackgum	Tree																								1 1	. 1		2	2 7	2 2	2	2	4	4	4	10 10	10
Platanus occidentalis	American sycamore	Tree		1	1	1					1	L :	1 1	. 2	2 2	2							4	4	4	4 4	. 5		4	4 !	5 5	5	5	7	7	8	7 7	7
Quercus	oak	Tree	1 1 :																				1	1	1	1 1	. 1		1	1 1	1 2	2	2	3	3	3	23 23	23
Quercus nigra	water oak	Tree							1	1 1	L 4	1 4	4 4	. 3	3	3	3	3	3	1	1	1	12	12	12 1	2 12	12	1	2 1	2 12	2 12	12	12	20	20	20	10 10	10
Quercus phellos	willow oak	Tree		2	2	2	3	3 3	3					1	. 1	1	5	5	5	3	3	4	14	14	15 1	5 15	15	1	3 1	3 14	4 12	12	12	16	16	16	18 18	18
Quercus rubra	northern red oak	Tree																												1	1							
Unknown		Shrub or Tree																												1							6 6	ϵ
		Stem count	5 5 19	7	7	8	10	10 10) 4	4 4	1 7	7	7 7	12	12	12	11	11	11	14	14	15	70	70	86 7	2 72	82	7	2 7	2 80	ე 75	75	79 ´	103	103 1	.09 1	.29 129	129
		size (ares)	1	Ī	1			1	i i	1		1			1			1	1		1			3		8		1	8		1	8			8		8	
		size (ACRES)	0.02	Î	0.02			0.02		0.02		0.02			0.02		0.02			0.02			0.20		0.20			0.20		,	0.20		0.20		0.20			
		Species count	4 4 4	4	4	4	4	4 4	1 4	4 4	1 4	1 4	4 4	- 6	6	6	5	5	5	8	8	8	13	13	13 1	4 14	15	1	4 1	4 1!	5 14	14	14	15	15	17	16 16	16
		Stems per ACRE	202.3 202.3 768.9	283.3	283.3	323.7	404.7	404.7 404.7	161.9	161.9 161.9	283.3	283.3	3 283.3	485.6	485.6	485.6	445.2	445.2	445.2	566.6	566.6	607	354.1 35	4.1 4	35 364	2 364.2	414.8	364.	2 364.	2 404.	7 379.4 3	79.4 399	9.6	521	521 55°	1.4 657	2.6 652.6	652.f

Color for Density

Exceeds requirements by 10%
Exceeds requirements, but by less than 10%

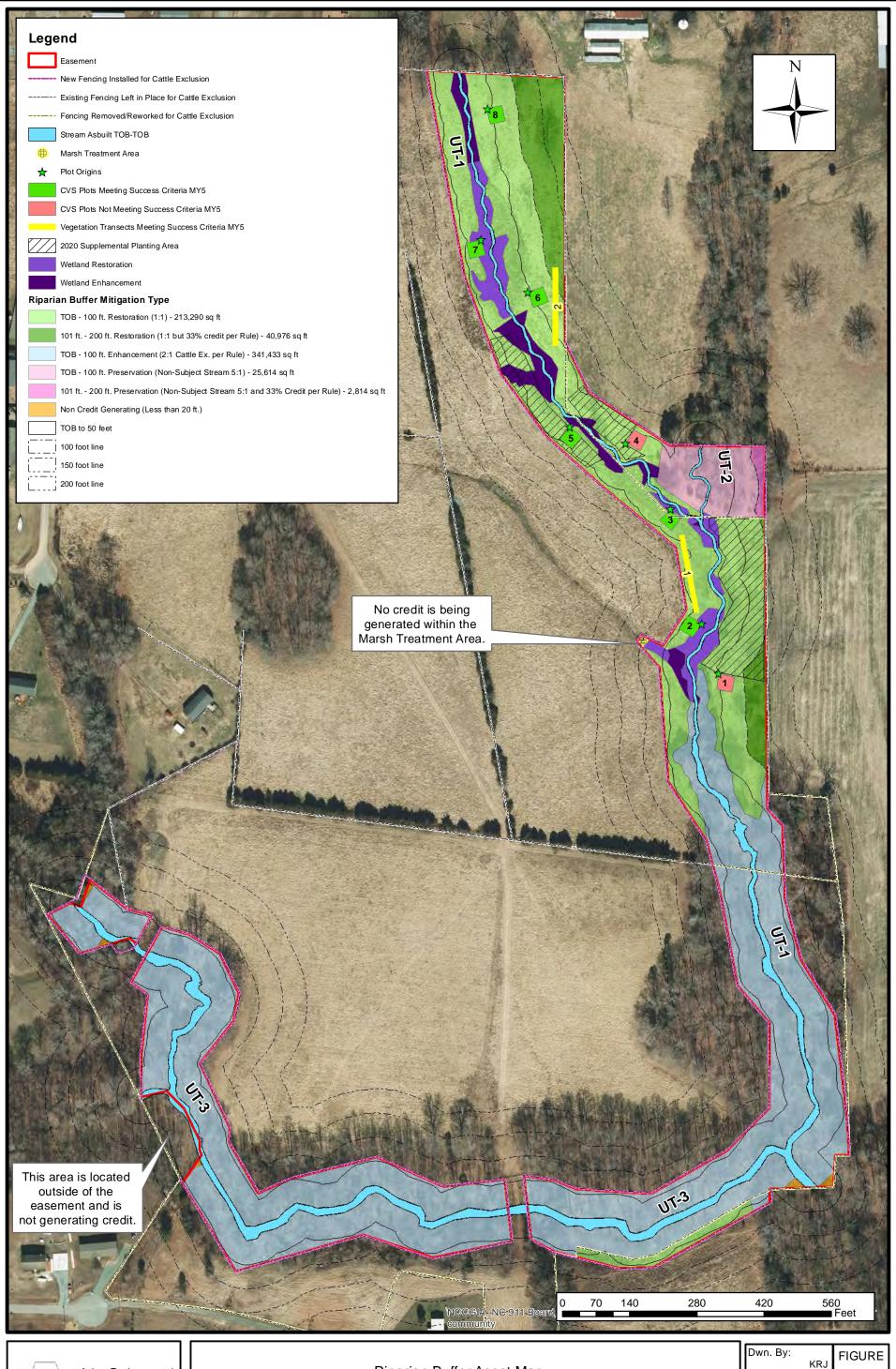
Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10% PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

T includes natural recruits

Table 7. Temporary Vegetation Plot Data


Species	50m x 2m Temporary Plot (Bearing)										
Species	T-1 (10°)	T-2 (345°)									
Carpinus caroliniana	5										
Diospyros virginiana		8									
Fraxinus pennsylvanica	6										
Platanus occidentalis	2	1									
Quercus nigra		1									
Quercus pagodas	3	1									
Total Stems	16	11									
Total Stems/Acre	648	445									

5.0 REFERENCES

- Jordan Lake Water Supply Watershed Buffer Rules 15A NCAC 02B .0267, 15A NCAC 02B .0268, and 15A NCAC 02B .0295
- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Level 1-2 Plot Version 4.2. Ecosystem Enhancement Program, North Carolina Department of Environment and Natural Resources.
- Schafale, M.P. and A.S. Weakley. 1990. *Classification of the Natural Communities of North Carolina:*Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation,
 N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.

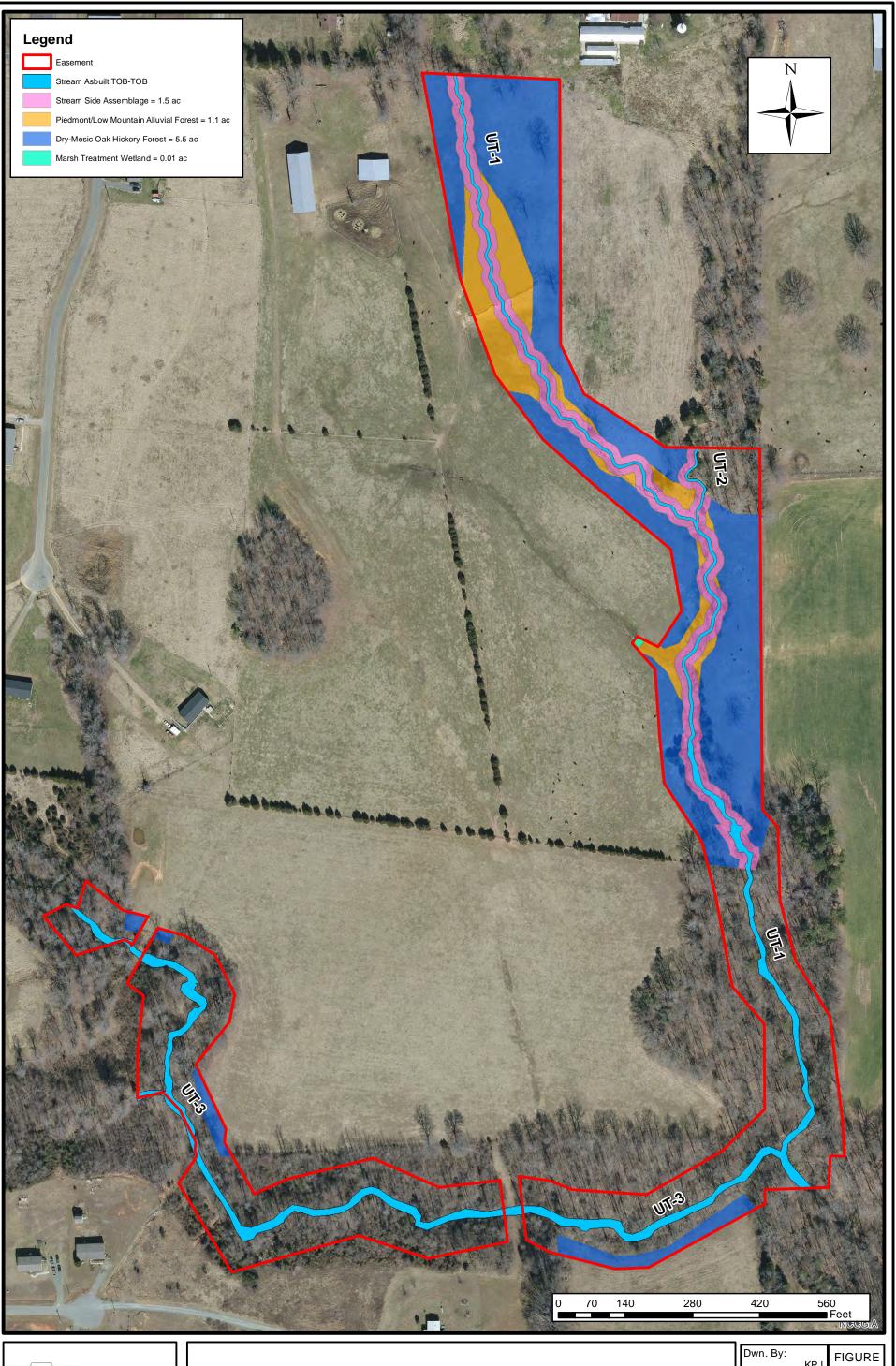

ATTACHMENT 1

Figure A. Riparian Buffer Asset Map Figure B. Riparian Buffer Planting Map Year 5 (2023) Planted Stem Height Data

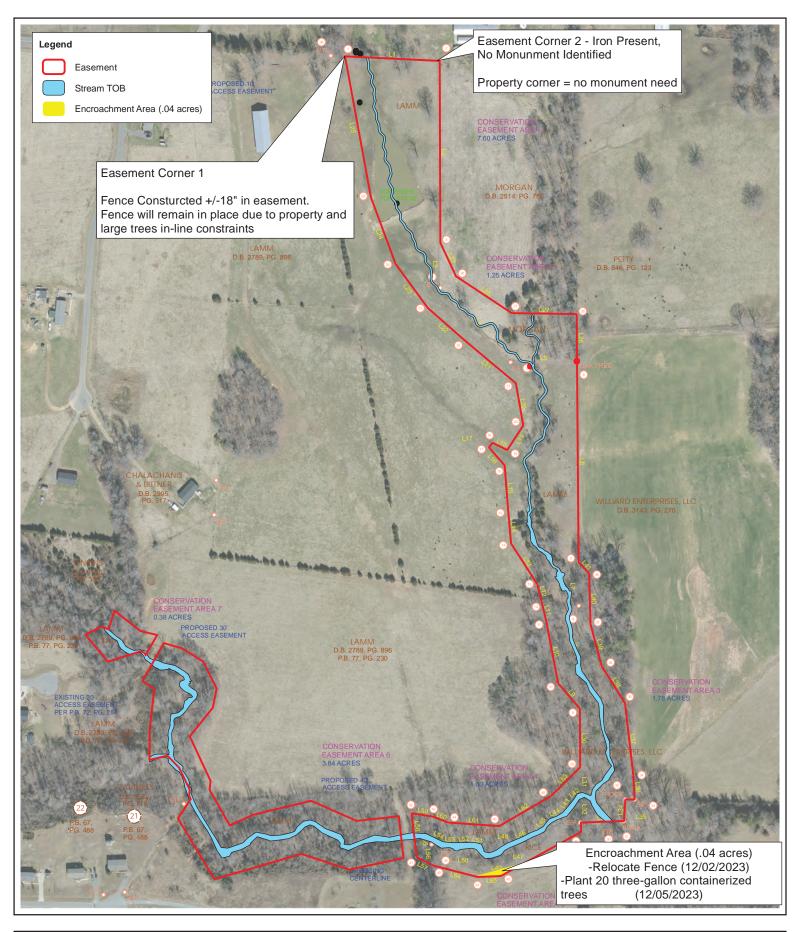
Axiom Environmental 218 Snow Ave Raleigh, NC 27607 (919) 215-1693

Riparian Buffer Asset Map Major Hill Mitigation Site Alamance County, North Carolina Dwn. By: KRJ
Date: Nov 2023
Project: 17-009

Axiom Environmental 218 Snow Ave Raleigh, NC 27607 (919) 215-1693

Riparian Buffer Planting Map Major Hill Mitigation Site Alamance County, North Carolina Dwn. By:
KRJ
Date:
Feb 2019
Project:
17-009

B


Year 5 (2023) Planted Stem Height Data

Plot	Scientific Name	Х	Υ	Height (cm)	DBH (cm)	Vigor
1	Liriodendron tulipifera	7.3	1.3	240	0.2	3
1	Carpinus caroliniana	9.2	4.1	251	0.25	2
1	Quercus	6.6	4.7	151	0.25	4
1	Fraxinus pennsylvanica	1.6	3.8	118	0.25	3
1	Fraxinus pennsylvanica	6.7	9.7	110	0.1	4
2	Quercus phellos	2.9	0.5	360	3	4
2	Carpinus caroliniana	4.8	3.4	160	0.25	4
2	Carpinus caroliniana	7.1	6.5	69		3
2	Platanus occidentalis	10.0	7.1	230	1.5	4
2	Nyssa sylvatica	4.5	8.0	0		0
2	Quercus phellos	1.6	5.9	280	2	4
2	Diospyros virginiana	7.8	2.6	165	0.5	4
2	Carpinus caroliniana	7.5	4.6	114		4
3	Carpinus caroliniana	2.4	1.4	340	2	4
3	Quercus phellos	5.3	1.4	260	1.5	4
3	Carpinus caroliniana	8.1	1.3	71	-	4
3	Carpinus caroliniana	6.8	2.7	110		4
3	Quercus phellos	10.0	3.0	120	0.5	4
3	Carpinus caroliniana	6.3	5.3	50		3
3	Cercis canadensis	4.2	10.0	10		4
3	Cercis canadensis	1.3	10.0	35		4
3	Diospyros virginiana	1.3	8.1	770	1.5	4
3	Quercus phellos	1.7	5.3	200	0.5	4
4	Fraxinus pennsylvanica	7.6	0.9	86	0.0	4
4	Betula nigra	7.6	3.3	61		4
4	Asimina triloba	8.3	8.2	0		0
4	Quercus nigra	6.2	8.0	60		4
4	Diospyros virginiana	2.4	7.2	131	0.1	4
5	Quercus nigra	0.3	1.0	240	2.5	4
5	Platanus occidentalis	2.8	0.1	370	5	4
5	Fraxinus pennsylvanica	2.1	3.7	265	2	4
5	Diospyros virginiana	5.1	4.3	50		4
5	Quercus nigra	5.5	1.2	100		4
5	Quercus nigra	7.5	8.0	110		4
5	Quercus nigra	0.2	6.5	225	0.25	4
5	Betula nigra	2.5	7.2	0	0.23	Missing
6	Quercus nigra	2.2	0.3	190	0.25	4
6	Carpinus caroliniana	3.0	2.7	95	5.25	3
6	Diospyros virginiana	0.9	3.4	205	1	4
6	Quercus phellos	6.5	0.8	205	1.5	4
6	Carpinus caroliniana	8.4	2.4	200	1.3	4
6	Quercus nigra	9.8	3.9	210	1.5	4
6	Platanus occidentalis	7.6	4.8	310	4	4
6	Fraxinus americana	9.0	7.0	380	2.5	4
6	Fraxinus americana Fraxinus americana	6.8	7.0	285	2.5	4
6	Fraxinus americana	4.6	8.0	290	2.5	4
U	Quercus nigra	0.5	8.0	230	0.5	4
6						

Plot	Scientific Name	Х	Υ	Height (cm)	DBH (cm)	Vigor
7	Platanus occidentalis	2.6	2.5	0		Missing
7	Quercus phellos	4.8	0.9	340	2.5	4
7	Quercus phellos	5.3	3.0	390	5	4
7	Betula nigra	5.7	4.9	290	1.75	4
7	Quercus nigra	7.6	3.5	193	0.25	4
7	Quercus phellos	8.8	1.2	290	2.75	4
7	Asimina triloba	8.5	6.1	340	4.5	4
7	Quercus phellos	6.3	7.1	360	3.75	4
7	Quercus nigra	8.8	8.5	380	4.5	4
7	Quercus nigra	1.2	6.9	250	2	4
7	Quercus phellos	1.7	5.1	240	1.75	4
7	Fraxinus pennsylvanica	3.6	8.2	340	2.75	4
8	Diospyros virginiana	4.3	1.5	165	0.25	4
8	Fraxinus	4.8	3.2	150	0.25	4
8	Diospyros virginiana	1.3	4.6	160	0.25	4
8	Cercis canadensis	7.3	0.4	40		4
8	Fraxinus americana	9.9	2.9	130	0.1	4
8	Betula nigra	7.3	2.8	110		4
8	Quercus nigra	5.1	5.0	195	0.25	4
8	Carpinus caroliniana	7.5	5.7	95		4
8	Cercis canadensis	9.8	6.0	50		4
8	Quercus phellos	7.4	6.2	280	1.5	4
8	Diospyros virginiana	7.2	7.6	225	1	4
8	Quercus phellos	8.4	8.7	190	0.5	4
8	Fraxinus americana	5.0	8.5	92		4
8	Diospyros virginiana	3.0	7.1	172	0.5	4
8	Quercus phellos	1.7	9.2	151	0.25	4

Appendix H. Easement Inspection Response

Figure 3. Map of Record Overview
NC DMS Comment Response
NC DMS Email Correspondence
Map of Record
Easement Inspection MY5 (2023) Photo Log

PHONE: 919.755.9490 FAX: 919.755.9492

RESTORATION SYSTEMS, LLC 1101 HAYNES ST, SUITE 211 RALEIGH, NC 27604 DATE: Dec - 2023

PROJECT: Boudary Ins.

SCALE:1 in = 292 ft

This map and all data contained within are supplied as is with no warranty. Restoration Systems, LLC expressly disclaims responsibility for damages or liability from any claims that may arise out of the use or instuse of this map. It is the sold responsibility of the user to determine if the data on this map is compatible with the user's needs. This map was not created as survey data, nor should be used as such, it is the user's responsibility to obtain proper survey data, praper by a licensed surveyor, where required by law.

Major Hill Stream & Wetland Mitigation Site NCDMS Contract # 7193. NCDMS Project ID 100015. RFP # 16-006990

Figure 3: Map of Record Overview

AERIAL PHOTOGRAPHY (c) 2010 Microsoft Corporation and its data suppliers Copyright: (c) 2011 Esri, DeLorme, NAVTEQ, TomTon COORDINATE SYSTEM: NAD 1983 SPLAS FEET

Response to Easement Boundary Inspection Year 5 (2023) Comments

Major Hill Mitigation Site (DMS #100015) Cape Fear River Basin 0303002, Alamance County Contract No. 100015

Comments Received (Black Text) & Response (Blue Text)

Danielle L. Mir, Eastern Project Manager, NC DEG Division of Mitigation Services

- There were no conservation easement signs anywhere along the fence line.
 Response: Easement signs were installed at all easement corners and within easement boundary lines longer than 200 feet.
- 2. North side of fence corner falls about 12"-18" inside easement. The fence needs to be moved outside of the easement.

Response: The fence built inside the easement at easement corner 1 will remain in place due to property constraints and large trees in-line of the property boundary. Please NC DMS Email Correspondence (Appendix H).

- 3. Cap does not have the survey number stamped which corresponds to the coordinates.

 Response: Survey cap 1 was determined to be appropriately stamped. See Easement Inspection MY5 (2023)se Photo Log (Appendix H).
- 4. There is not a 3 ¼ inch aluminum cap on this corner.

 Response: Easement corner 2 is a property corner identified as an existing iron pipe, see Map of Record (Appendix H).

Mir. Danielle
Merritt. Josh
Holz. Raymond: Dow_Jeremiah. J
RE: [External] RE: Major Hill Stream and Wetland Restoration Site (100015) - Property Boundary Issues
Monday, September 25, 2023 4:45:44 PM
Imaga603.pm
Imaga603.bm
Imaga603.bm
Imaga603.bm
Imaga603.bm
Imaga603.bm

Attachments:

Hello Josh,

FYI. I just spoke with our property person, he let me know that there is another property owner near that orner that I marked red in the parcel's that I labeled A & B. . If the property mark is right on the parcel boundary, the fence cannot go outside the easement into another person's property. Since you will have a surveyor out to put a seal on the plates and verify, it may be helpful to make sure and mark that there is a different parcel. (The Easement shape and county parcel may not be all georeferenced properly since much of the project looks to be in parcel B – this is a quick

Parcel A = Andrew M Tinnin (104203) Parcel B = Andrew M Tinnin (104211) Parcel C = Carol Lamim (104191)

Please let me know if you have any questions.

Danielle L. Mir

Eastern Project Manager NC DEQ, Division of Mitigation Services Cell: 919-896-0012 Off: 919-707-8949

ce to and from this address is subject to the North ords Law and may be disclosed to third parties.

From: Merritt, Josh < Joshua. Merritt@davey.com> Sent: Monday, September 25, 2023 3:47 PM To: Mir, Danielle <Danielle.Mir@deq.nc.gov> Cc: Holz, Raymond <Raymond.Holz@davey.com>

Subject: [External] RE: Major Hill Stream and Wetland Restoration Site (100015) - Property Boundary Issues

CAUTION: External email. Do not click links or open attachments unless verified. Report suspicious emails with the Report Message button located on your Outlook menu bar on the Home tab.

Hey Danielle,

Thank you for your update and phone call. RS will work on resolving your noted issues.

We will coordinate with you on another site visit this Fall once the boundary has been thoroughly inspected and all issues are resolved.

Thanks again, Josh M.

Joshua Merritt

Project Manager (M): 919.830.9232

From: Mir, Danielle < Danielle.Mir@deq.nc.gov> Sent: Monday, September 25, 2023 2:54 PM To: Merritt, Josh < Joshua.Merritt@davey.com> Cc: Holz, Raymond < Raymond.Holz@davey.com>

Subject: Major Hill Stream and Wetland Restoration Site (100015) - Property Boundary Issues

We went to Major Hill Thursday afternoon and looked at about 25% of the boundary. We will be happy to reschedule a full boundary inspection after the following items are addressed:

Entire Property

• There were no conservation easement signs anywhere along the fence line. (Please refer to the 3rd bullet of items 7, Step Three: Task 2 Payment, page 16 of the RFP below)

Placemark 1

- Photo 1 North side of fence corner falls about 12"-18" inside the easement.
 - The fence needs to be moved to the outside of the easement.
- Photo 2 Cap does not have the survey number stamped which corresponds to the coordinates. (Please refer to the 1st bullet of item 7, Step Three: Task 2 Payment, page 16 of the RFP below)

Placemark 2

• Photo 3 - There is not a 3 ¼ inch aluminum cap on this corner.

Please note, that we did not look at the entire site and it is advised for you all to check all boundary corners prior to us coming out. Please let me know if you have any questions.

Have a great day. -Danielle

Step Three: Task 2 Payment

The Contractor will complete the seven (7) listed deliverables along with invoice for Task 2 payment. Document deliverables shall be submitted electronically to the DMS project manager and SPO Manager Blane Rice (Blane.Rice@doa.nc.gov). Additionally, SPO requires one (1) hard copy of all the original documents and a compact disk mailed to Blane Rice, NC Department of Administration, State Property Office, 1321 Mail Service Center, Raleigh, NC 27699-1321. Once received, SPO will issue authorization for payment.

- Recorded Conservation Easement in Adobe PDF form Recorded Survey Plat in Adobe PDF form Updated digital easement file in AutoCAD (.dwg) and ArcMap (.shp) format
- Final attorneys report on title based on 30-year search with deeds and documentation.
 Additionally, the following must be satisfied during Task 2:
- Original title insurance policy shall be forwarded to SPO as soon as it is available to Blane Rice.
- Provide the name, address, phone number, and e-mail address (if available) of each grantor via electronic communication to SPO and DMS.
- Install survey monumentation and conduct boundary marking with the following specifications:

 The Contractor shall set 5/8" rebar 30" in length with 3-1/4" aluminum caps on all easement corners.

 Caps shall meet DMS specifications (Berntsen RBD5325, imprinted with NC State Logo # 89087 or equivalent). After installation, caps shall be stamped with the corresponding number from the table of coordinates on the survey.
- The Contractor shall place a 6-foot tall durable witness post at each corner in the conservation easement
- boundary. Posts shall be made of material that will last a minimum of 20 years.

 The Contractor shall attach a conservation easement sign to each witness post and place additional signs. at no more than 200-foot intervals on long boundary lines. When applicable, the Contractor can mark existing trees (>3dbh) with conservation easement signs and/or blaze property lines at approximate eye level in lieu of line posts. Where applicable, established fence posts can be used for placement of signage.

er: 7/1/15 Page 16 of 46

Email correspondence to and from this address may be subject to the North Carolina Public Records Law and may be disclosed to third parties by an authorized state official.

From: Mir, Danielle
To: Merritt, Josh

Cc: Holz, Raymond; Dow, Jeremiah J

Subject: 100015 - Major Hill Stream and Wetland - Fence line

Date: Monday, October 16, 2023 3:54:25 PM

Attachments: <u>image001.png</u>

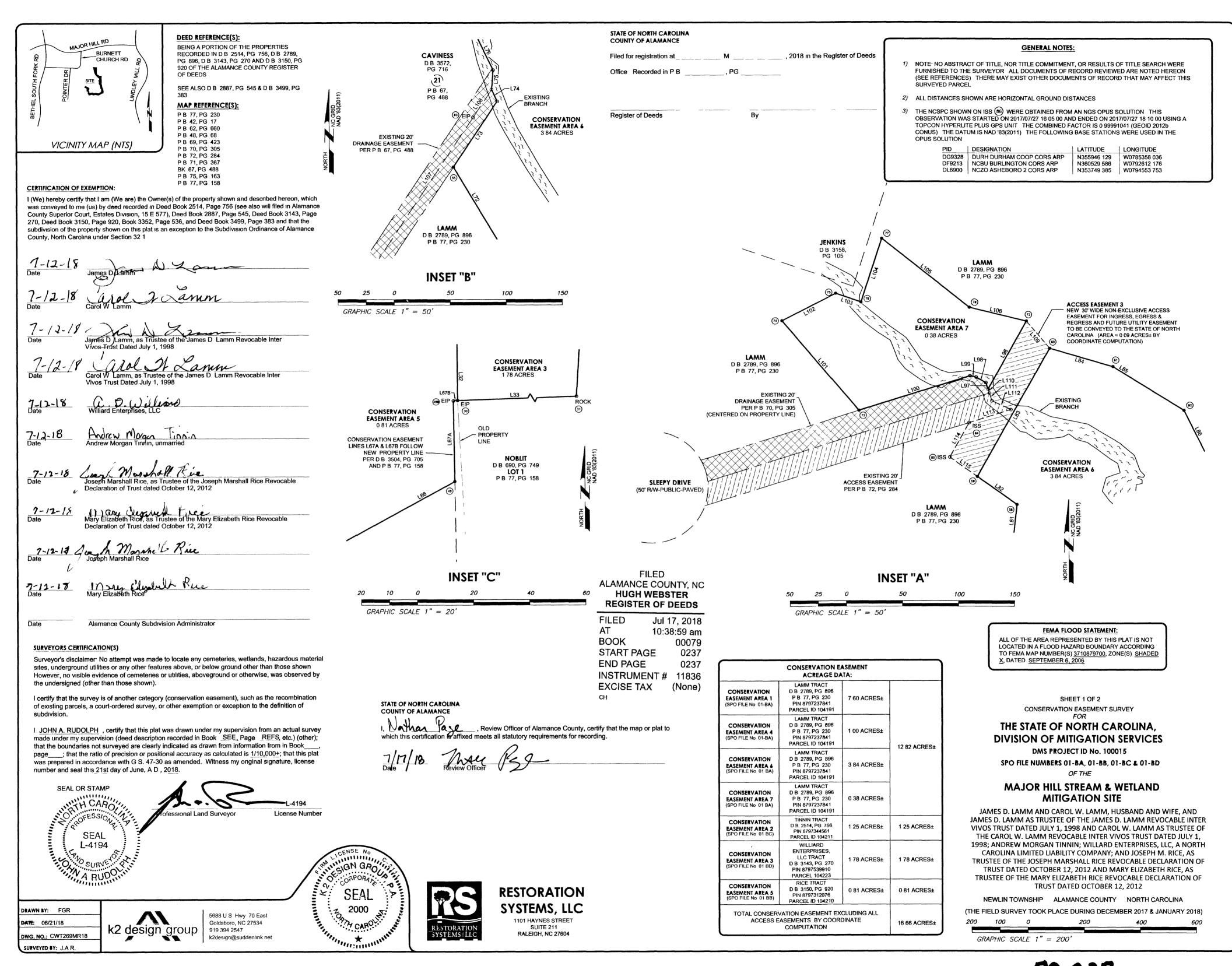
Hello Josh,

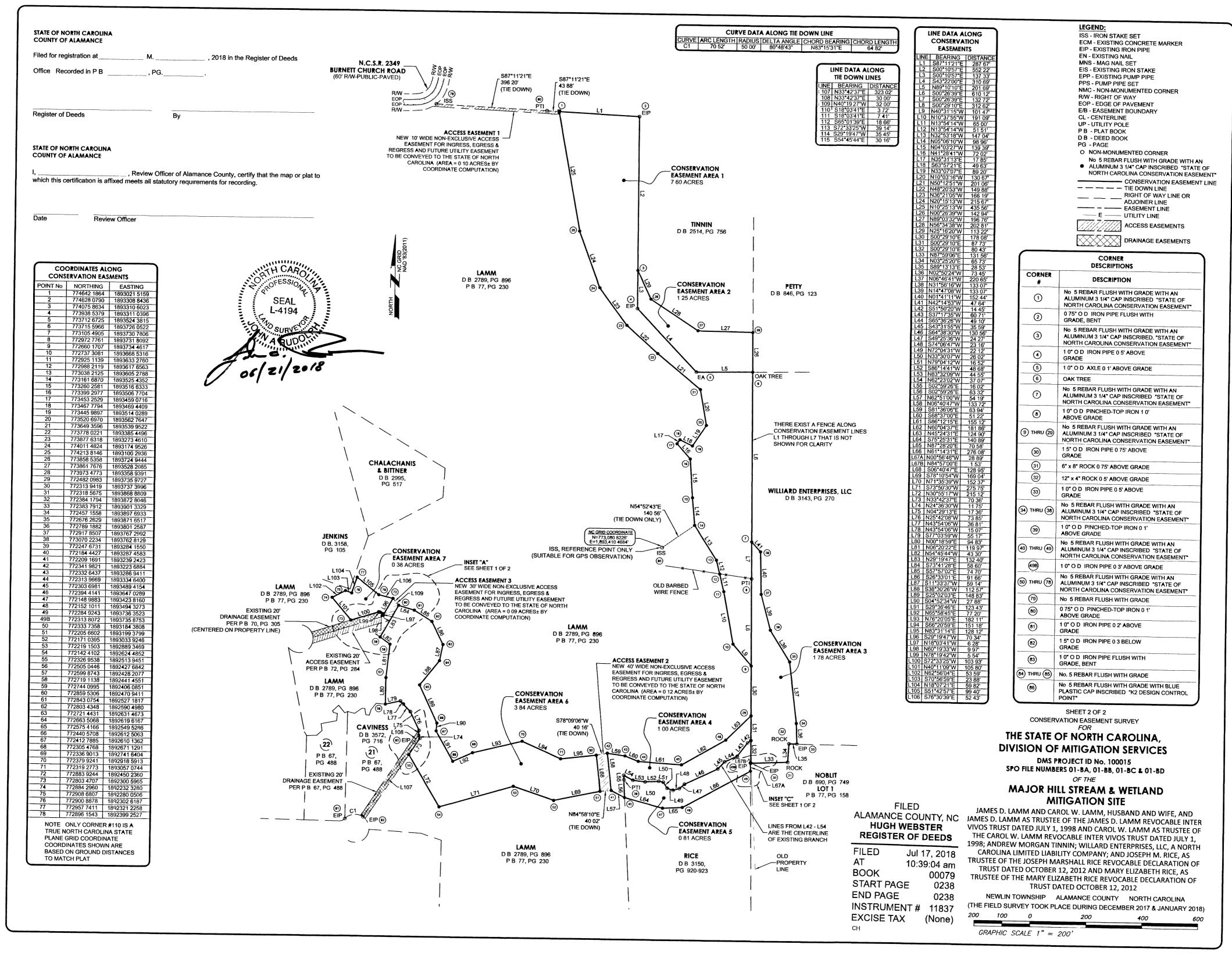
After speaking with the Property Team and Stewardship the fence at Major Hill on the north end is where it should be. The corner, that is 18" inside the easement will **not** need to be moved. I hope this helps.

Have a great day.

-Danielle

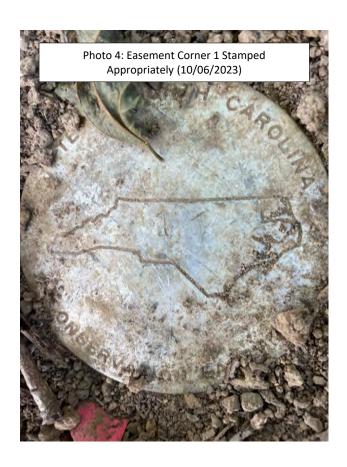
Danielle L. Mir


Eastern Project Manager
NC DEQ, Division of Mitigation Services
Cell: 919-896-0012 Off: 919-707-8949


danielle.mir@deg.nc.gov

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

Email correspondence to and from this address may be subject to the North Carolina Public Records Law and may be disclosed to third parties by an authorized state official.


Major Hill Boundary Inspection MY-05 (2023) Photo Log

Major Hill Boundary Inspection MY-05 (2023) Photo Log

Major Hill Boundary Inspection MY-05 (2023) Photo Log

